Abstands- und Winkelbestimmungen: Unterschied zwischen den Versionen
Aus RSG-Wiki
Zeile 55: | Zeile 55: | ||
Schreibt man die Ebenengleichungen nur als Normalenform analog der Ebenengleichung für E, dann lauten sie <math>16x_1+ 8x_2 + 2x_3 + 162 = 0</math> und <math>16x_1+ 8x_2 + 2x_3 - 162 = 0</math> .<br> | Schreibt man die Ebenengleichungen nur als Normalenform analog der Ebenengleichung für E, dann lauten sie <math>16x_1+ 8x_2 + 2x_3 + 162 = 0</math> und <math>16x_1+ 8x_2 + 2x_3 - 162 = 0</math> .<br> | ||
[[Datei:154-4.jpg|parallele Ebenen|400px]]<br> | [[Datei:154-4.jpg|parallele Ebenen|400px]]<br> | ||
− | (E1 für +9 und E2 für -9; E1 und E2 liegen in verschiedenen Halbräumen des durch E geteilten Raumes.) | + | (E1 für +9 und E2 für -9; E1 und E2 liegen in verschiedenen Halbräumen des durch E geteilten Raumes.)}} |
+ | |||
+ | S. 154/6 | ||
+ | |||
+ | {{Lösung versteckt|1=a) Gleichsetzen der zwei Geradengleichungen liefert den Schnittpunkt (S(1;-1;0).<br> | ||
+ | Der Schnittwinkel ist <math> cos\varphi=\vert \frac{\left( \begin{array}{c} 0 \\\ 2 \\\ 1 \end{array}\right) \circ \left( \begin{array}{c} 1 \\\ 0 \\\ 3 \end{array}\right)}{\sqrt{5}\cdot \sqrt{10}} \vert = \frac{3}{\sqrt{50}}</math>, also <math>\varphi = 64,0^o</math>. | ||
+ | |||
+ | b) S(0;2;-1) und <math>\varphi = 32,3^o</math> | ||
+ | |||
+ | c) S(2;2;2) und <math>\varphi = 50,8^o</math>}} | ||
+ | |||
+ | S. 154/7 | ||
+ | |||
+ | {{Lösung versteckt|1=a) Setzt man g in E ein, erhält man diese Gleichung 3(1+k) - (-2) - (-k) = 1 und k = -1. S(0;-2;1)<br> | ||
+ | <math> sin\varphi=\vert \frac{\left( \begin{array}{c} 1 \\\ 0 \\\ -1 \end{array}\right) \circ \left( \begin{array}{c} 3 \\\ -1 \\\ -1 \end{array}\right)}{\sqrt{2}\cdot \sqrt{11}} \vert = \frac{4}{\sqrt{22}}</math> und <math>\varphi = 58,5^o</math> | ||
+ | |||
+ | b) S(4;-1;-1) und <math>\varphi=71,5^o</math>}} | ||
+ | |||
+ | S. 154/8 | ||
+ | |||
+ | {{Lösung versteckt|1= | ||
}} | }} |
Version vom 25. März 2020, 08:33 Uhr
Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.
Die Hessesche Normalenform (HNF)
Aufgaben
S. 153/1
S. 153/2
S. 154/4
S. 154/6
S. 154/7
S. 154/8