Abstands- und Winkelbestimmungen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 60: Zeile 60:
  
 
{{Lösung versteckt|1=a) Gleichsetzen der zwei Geradengleichungen liefert den Schnittpunkt (S(1;-1;0).<br>
 
{{Lösung versteckt|1=a) Gleichsetzen der zwei Geradengleichungen liefert den Schnittpunkt (S(1;-1;0).<br>
Der Schnittwinkel ist <math> cos\varphi=\vert \frac{\left( \begin{array}{c} 0 \\\ 2 \\\ 1  \end{array}\right) \circ \left( \begin{array}{c} 1 \\\ 0 \\\ 3  \end{array}\right)}{\sqrt{5}\cdot \sqrt{10}} \vert = \frac{3}{\sqrt{50}}</math>, also <math>\varphi = 64,0^o</math>.
+
Für den Schnittwinkel interessieren nur die Richtungsvektoren der Geraden. Man erhält ihn aus <math> cos\varphi=\vert \frac{\left( \begin{array}{c} 0 \\\ 2 \\\ 1  \end{array}\right) \circ \left( \begin{array}{c} 1 \\\ 0 \\\ 3  \end{array}\right)}{\sqrt{5}\cdot \sqrt{10}} \vert = \frac{3}{\sqrt{50}}</math>. Es ist <math>\varphi = 64,0^o</math>.
 +
 
 +
Ich lasse die Betragsstriche meist weg. Ist das Ergebnis für cos oder sin negativ, dann nimmt man einfach hier den Betrag<br>
 +
und erhält dann den spitzen Winkel.
  
 
b) S(0;2;-1) und <math>\varphi = 32,3^o</math>
 
b) S(0;2;-1) und <math>\varphi = 32,3^o</math>
Zeile 69: Zeile 72:
  
 
{{Lösung versteckt|1=a) Setzt man g in E ein, erhält man diese Gleichung 3(1+k) - (-2) - (-k) = 1 und k = -1. S(0;-2;1)<br>
 
{{Lösung versteckt|1=a) Setzt man g in E ein, erhält man diese Gleichung 3(1+k) - (-2) - (-k) = 1 und k = -1. S(0;-2;1)<br>
<math> sin\varphi=\vert \frac{\left( \begin{array}{c} 1 \\\ 0 \\\ -1  \end{array}\right) \circ \left( \begin{array}{c} 3 \\\ -1 \\\ -1  \end{array}\right)}{\sqrt{2}\cdot \sqrt{11}} \vert = \frac{4}{\sqrt{22}}</math> und <math>\varphi = 58,5^o</math>
+
Für den Schnittwinkel interessieren der Richtungsvektor von g und der Normalenvektor der Ebene E. <math> sin\varphi=\vert \frac{\left( \begin{array}{c} 1 \\\ 0 \\\ -1  \end{array}\right) \circ \left( \begin{array}{c} 3 \\\ -1 \\\ -1  \end{array}\right)}{\sqrt{2}\cdot \sqrt{11}} \vert = \frac{4}{\sqrt{22}}</math> und <math>\varphi = 58,5^o</math>
  
 
b) S(4;-1;-1) und <math>\varphi=71,5^o</math>}}
 
b) S(4;-1;-1) und <math>\varphi=71,5^o</math>}}
Zeile 75: Zeile 78:
 
S. 154/8
 
S. 154/8
  
{{Lösung versteckt|1=
+
{{Lösung versteckt|1=a) Für den Schnittwinkel interessieren die zwei Normalenvektoren der Ebene. <math> cos\varphi=\vert \frac{\left( \begin{array}{c} 5 \\\ 2 \\\ -6  \end{array}\right) \circ \left( \begin{array}{c} 1 \\\ 5 \\\ 3  \end{array}\right)}{\sqrt{65}\cdot \sqrt{35}} \vert = \vert \frac{-3}{\sqrt{2275}}\vert = \frac{3}{\sqrt{2275}} </math> und <math>\varphi = 86,4^o</math>
 +
 
 +
b) <math>\varphi = 90^o</math>
 +
 
 +
c) <math>\varphi = 90^o</math>
  
}}
+
d) Hier ist es sinnvoll beide Ebenengleichungen in Normalenform zu schreiben;<br>
 +
E<sub>1</sub>: 5x<sub>1</sub> - 6x<sub>2</sub> - 2x<sub>3</sub> + 3 = 0 und E<sub>2</sub>: 2x<sub>1</sub> + x<sub>3</sub> -3 = 0<br>
 +
<math>\varphi = 63,7^o</math>}}

Version vom 25. März 2020, 09:04 Uhr

Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.


Die Hessesche Normalenform (HNF)

Winkelberechnungen

Aufgaben

S. 153/1

[Lösung anzeigen]

S. 153/2

[Lösung anzeigen]

S. 154/4

[Lösung anzeigen]

S. 154/6

[Lösung anzeigen]

S. 154/7

[Lösung anzeigen]

S. 154/8

[Lösung anzeigen]