Abstands- und Winkelbestimmungen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 122: Zeile 122:
 
<math>d(D,E)= \frac{4\cdot 8 - 3\cdot 2 + 6 -6}{\sqrt{26}} = \sqrt{26} </math> und <math>d(D^*,E)=\vert \frac{4\cdot 0 - 3\cdot 8 + 4 -6}{\sqrt{26}} \vert = \vert -\sqrt{26} \vert = \sqrt{26}</math> . Damit liegen D und D<sup>*</sup> auch symmetrisch zur Ebene E.
 
<math>d(D,E)= \frac{4\cdot 8 - 3\cdot 2 + 6 -6}{\sqrt{26}} = \sqrt{26} </math> und <math>d(D^*,E)=\vert \frac{4\cdot 0 - 3\cdot 8 + 4 -6}{\sqrt{26}} \vert = \vert -\sqrt{26} \vert = \sqrt{26}</math> . Damit liegen D und D<sup>*</sup> auch symmetrisch zur Ebene E.
  
b)  
+
b) Das Vorgehen für die Spiegelung eines Punktes S an einer Ebene ist:<br>
 +
* Fälle von S das Lot auf die Ebene. Dabei ist das Lot l eine Gerade durch S in Richtung des Normalenvektors der Ebene E.
 +
* Bestimme den Lotfußpunkt F als Schnittpunkt der Lotgeraden l mit der Ebene E.
 +
* Den Spiegelpunkt erhält man, indem man den Verbindungsvektor der Punkte S und F über F hinaus nochmals anträgt.
  
}}
+
c) Das Vorgehen ist in b) erklärt. Das Lot von P auf E schneidet die Ebene in F(3;1;2) und der Spiegelpunkt ist P<sup>*</sup>(-4;3;1).}}

Version vom 25. März 2020, 11:46 Uhr

Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.


Die Hessesche Normalenform (HNF)

Winkelberechnungen

Aufgaben

S. 153/1

[Lösung anzeigen]

S. 153/2

[Lösung anzeigen]

S. 154/4

[Lösung anzeigen]

Nuvola apps kig.png   Merke

Bei gleichen Objekten (Gerade - Gerade) bzw. (Ebene - Ebene) wird cos zur Winkelberechnung verwendet.

Bei ungleichen Objekten (Gerade - Ebene) wird sin zur Winkelberechnung verwendet.

S. 154/6

[Lösung anzeigen]

S. 154/7

[Lösung anzeigen]

S. 154/8

[Lösung anzeigen]


S. 154/9

[Lösung anzeigen]

S. 155/10

[Lösung anzeigen]