Abstands- und Winkelbestimmungen: Unterschied zwischen den Versionen
Aus RSG-Wiki
Zeile 138: | Zeile 138: | ||
S. 155/13 | S. 155/13 | ||
+ | |||
+ | {{Lösung versteckt|1=a) Der Mittelpunkt der Kugel ist der Ursprung M(0;0;0). Der Normalenvektor <marh>\vec{n}</math> der Ebene E ist <math> \vec{n} = \left( \begin{array}{c} 2 \\\ -2 \\\ 1 \end{array}\right)</math> und hat den Betrag 3.<br> | ||
+ | Mit der HNF der Ebene E kann man den Abstand von M zur Ebene E berechnen. Es ist <math>d(m,E)=\frac{9}{3}=3</math>. Damit die Kugel die Ebene berührt muss ihr Radius 3 sein. <br> | ||
+ | Den Berührpunkt erhält man, indem man von M aus ein Lot l auf E errichtet. Dieses Lot hat als Stützpunkt M und als Richtungsvektor den Normalenvektor der Ebene, also <math>l: \vec{x}= k \cdot \left( \begin{array}{c} 2 \\\ -2 \\\ 1 \end{array}\right)</math>. Setzt man die Koordinaten von l in die Ebenengleichung, erhält man 2·2k - 2(-2k) + k - 9 = 0 und k = 1. Der Berührpunkt B hat die Koordinaten B(2;-2;1). | ||
+ | |||
+ | Analog geht man bei den Aufgaben b) und c) vor.<br> | ||
+ | b) r = <math>\frac{10}{3}</math> und <math>B(-\frac{10}{9};-\frac{28}{9};\frac{4}{9})</math>.<br> | ||
+ | c) r = 3 und B(6;-1;1).}} | ||
S. 155/15 | S. 155/15 | ||
S. 156/16 | S. 156/16 | ||
+ | |||
+ | {{Lösung versteckt|1=Die Ebene E hat Normalenvektor <math> \vec{n} = \left( \begin{array}{c} 2 \\\ 6 \\\ 3 \end{array}\right)</math>. Der Normaleneinheitsvektor ist <math> \vec{n^o} = \frac{1}{7} \cdot \left( \begin{array}{c} 2 \\\ 6 \\\ 3 \end{array}\right)</math>. Der Radius der Kugel ist 7. Geht man nun von S aus 7 mal in Richtung <math> \vec{n^o}</math> oder <math> -\vec{n^o}</math>, dann erhält man die zwei Mittelpunkte M und M<sup>*</sup>.<br> | ||
+ | Also <math>\vec{m}= \left( \begin{array}{c} 0 \\\ 0 \\\ 20 \end{array}\right) + 7 \cdot \frac{1}{7} \cdot \left( \begin{array}{c} 2 \\\ 6 \\\ 3 \end{array}\right)=\left( \begin{array}{c} 2 \\\ 6 \\\ 23 \end{array}\right) </math> und M(2;6;23)<br> | ||
+ | Also <math>\vec{m}= \left( \begin{array}{c} 0 \\\ 0 \\\ 20 \end{array}\right) - 7 \cdot \frac{1}{7} \cdot \left( \begin{array}{c} 2 \\\ 6 \\\ 3 \end{array}\right)=\left( \begin{array}{c} -2 \\\ -6 \\\ 17 \end{array}\right) </math> und M(-2;-6;17). | ||
+ | |||
+ | b) Die Gerade m hat als Stützpunkt M und ihr Richtungsvektor ist der Vektor <math>\vec{SL}=\left( \begin{array}{c} 3 \\\ 9 \\\ -20 \end{array}\right)</math>. Damit ist <math>m: \vec{x}=\left( \begin{array}{c} 2 \\\ 6 \\\ 23 \end{array}\right) + k \left( \begin{array}{c} 3 \\\ 9 \\\ -20 \end{array}\right)</math>. | ||
+ | |||
+ | c) Die Ebene E<sup>*</sup> ist parallel zur x<sub>1</sub>x<sub>2</sub>-Ebene im Abstand 7 (Radius der Kugel), also x<sub>3</sub> - 7 = 0 .<br> | ||
+ | Setzt man die x<sub>3</sub>-Koordinate von m in die Ebenengleichung ein erhält man 23 - 20k - 7 = 0 und <math>k=\frac{4}{5}</math> . Die Koordinaten von T erhält man, wenn man diesen Wert von k in die Geradengleichung von m einsetzt, also T(4,4;13,2;7) . | ||
+ | |||
+ | d)Den Berührpunkt erhält man, wenn man von T aus 7 mal in Richtung <math> -\vec{n^o}</math> geht. Dann ist <math>\vec{b} = \left( \begin{array}{c} 4,4 \\\ 13,2 \\\ 7 \end{array}\right) - \left( \begin{array}{c} 2 \\\ 6 \\\ 3 \end{array}\right) = \left( \begin{array}{c} 2,4 \\\ 7,2 \\\ 4 \end{array}\right)</math> uns B(2,4;7,2;4).}} |
Version vom 25. März 2020, 17:47 Uhr
Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.
Die Hessesche Normalenform (HNF)
Aufgaben
S. 153/1
S. 153/2
S. 154/4
Bei gleichen Objekten (Gerade - Gerade) bzw. (Ebene - Ebene) wird cos zur Winkelberechnung verwendet. Bei ungleichen Objekten (Gerade - Ebene) wird sin zur Winkelberechnung verwendet. |
S. 154/6
S. 154/7
S. 154/8
S. 154/9
S. 155/10
S. 155/12
S. 155/13
S. 155/15
S. 156/16