Abstands- und Winkelbestimmungen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 148: Zeile 148:
  
 
S. 155/15
 
S. 155/15
 +
 +
{{Lösung versteckt|1=Wie wir es schon öfter gemacht haben, macht man auch hier von Q ein Lot auf g. Der Lotfußpunkt F auf g hat einen Ortsvektor <math>\vec{f}= \left( \begin{array}{c} 3-2k \\\ -2+2k \\\ 3+k \end{array}\right)</math> und der Vektor <math>\vec{QF}</math> steht senkrecht auf dem Richtungsvektor <math>\left( \begin{array}{c} 2 \\\ 2 \\\ 1 \end{array}\right) </math> der Geraden g. Es ist also <math> \left( \begin{array}{c} -2+2k \\\ -8+2k \\\ 2+k \end{array}\right) \circ \left( \begin{array}{c} 2 \\\ 2 \\\ 1 \end{array}\right) = 0</math> . Dies führt zur Gleichung 2(-2+2k) + 2(-8+2k) + 2+k =0 und k = 2 und F(7;2;5). Der Abstand der beiden Geraden ist dann <math>\vert \vec{QF} \vert = \vert \left( \begin{array}{c} 2 \\\ -4 \\\ 4 \end{array}\right) \vert = 6 </math> .
 +
 +
b) g und h spannen eine Ebene auf. g kann man gleich nehmen und man braucht noch einen zweiten Richtungsvektor, dafür eignet sich der Verbindungsvektor <math> \left( \begin{array}{c} 2 \\\ 8 \\\ -2 \end{array}\right)</math>  der beiden Stützpunkte, so dass sich diese Parameterdarstellung <math>\vec{x}=\left( \begin{array}{c} 3 \\\ -2 \\\ 3 \end{array}\right) + r\cdot \left( \begin{array}{c} 2 \\\ 2 \\\ 1 \end{array}\right) + s\cdot\left( \begin{array}{c} 1 \\\ 4 \\\ -1 \end{array}\right)</math> der Ebene E ergibt. Für die Normalenform der Ebenengleichung rechnet man zuerst <math>\left( \begin{array}{c} 2 \\\ 2 \\\ 1 \end{array}\right) x \left( \begin{array}{c} 1 \\\ 4 \\\ -1 \end{array}\right) = \left( \begin{array}{c} -6 \\\ 3 \\\ 6 \end{array}\right)</math>. Also ist <math> \vec{n}=\left( \begin{array}{c} -2 \\\ 1 \\\ 2 \end{array}\right)</math> ein Normalenvektor und -2x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 2 = 0 . <br>
 +
 +
Den Schnittwinkel der Geraden k mit der Ebene E erhält man  <math> sin\varphi=\vert \frac{\left( \begin{array}{c} -2 \\\ 1 \\\ 2  \end{array}\right) \circ \left( \begin{array}{c} -3 \\\ 1 \\\ 0  \end{array}\right)}{3 \cdot \sqrt{10}} \vert = \frac{7}{3\sqrt{10}}</math> und <math>\varphi = 47,5^o</math> .
 +
}}
  
 
S. 156/16
 
S. 156/16

Version vom 25. März 2020, 21:57 Uhr

Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.


Die Hessesche Normalenform (HNF)

Winkelberechnungen

Aufgaben

S. 153/1

[Lösung anzeigen]

S. 153/2

[Lösung anzeigen]

S. 154/4

[Lösung anzeigen]

Nuvola apps kig.png   Merke

Bei gleichen Objekten (Gerade - Gerade) bzw. (Ebene - Ebene) wird cos zur Winkelberechnung verwendet.

Bei ungleichen Objekten (Gerade - Ebene) wird sin zur Winkelberechnung verwendet.

S. 154/6

[Lösung anzeigen]

S. 154/7

[Lösung anzeigen]

S. 154/8

[Lösung anzeigen]




S. 154/9

[Lösung anzeigen]

S. 155/10

[Lösung anzeigen]

S. 155/12

[Lösung anzeigen]

S. 155/13

[Lösung anzeigen]

S. 155/15

[Lösung anzeigen]

S. 156/16

[Lösung anzeigen]