M8 Term und Graph bei gebrochen-rationalen Funktionen: Unterschied zwischen den Versionen
Zeile 1: | Zeile 1: | ||
− | + | __NOCACHE__ | |
Auf dieser Seite soll der Zusammenhang zwischen dem Graphen und dem Funktionsterm einer gebrochen-rationalen Funktion näher untersucht werden. Dabei geht es um zwei Fragestellungen:<br> | Auf dieser Seite soll der Zusammenhang zwischen dem Graphen und dem Funktionsterm einer gebrochen-rationalen Funktion näher untersucht werden. Dabei geht es um zwei Fragestellungen:<br> | ||
1. Wie finde ich aus einem gegebenen Graphen den passenden Funktionsterm.<br> | 1. Wie finde ich aus einem gegebenen Graphen den passenden Funktionsterm.<br> |
Version vom 18. Juni 2020, 08:08 Uhr
Auf dieser Seite soll der Zusammenhang zwischen dem Graphen und dem Funktionsterm einer gebrochen-rationalen Funktion näher untersucht werden. Dabei geht es um zwei Fragestellungen:
1. Wie finde ich aus einem gegebenen Graphen den passenden Funktionsterm.
2. Wie kann man "leicht" aus einem gegebenen Funktionsterm den Graphen angeben.
Zur Beantwortung sind die folgenden Eigenschaften gebrochen-rationaler Funktionen hilfreich.
Ausgangspunkt unserer Betrachtungen ist die indirekte Proportionalität . Die Funktion ist für definiert. Die Funktionsgleichung ist und der Funktionsgraph
Inhaltsverzeichnis |
Definitionslücke - senkrechte Asymptote
Die Funktion ist für nicht definiert, da wenn man b für x einsetzt im Nenner Null steht. Das ist nicht zulässig. Also ist . An der Stelle hat die Funktion eine Definitionslücke. Der Graph eine senkrechte Asymptote. ist eine Polstelle des Graphen.
1. Die Funktionsgleichung ist und die Gleichung der Asymptote .
2. Der Graph von f der indirekten Proportionalität wird um b=1 in positive x-Richtung verschoben.
Ebenso wird die Asymptote um 1 in positive x-Richtung verschoben.
Die Funktionsgleichung ist und die Gleichung der Asymptote .
3. Der Graph von f der indirekten Proportionalität wird um 2 in negative x-Richtung verschoben.
Ebenso wird die Asymptote um 2 in negative x-Richtung verschoben.