M10 Die Exponentialfunktion: Unterschied zwischen den Versionen
| Zeile 1: | Zeile 1: | ||
| + | __NOCACHE__ | ||
Bei den Beispielen zum exponentiellen Wachstum war der Term immer von der Form <math>y = b \cdot a^x</math>. Dabei war b der Anfangsbestand und a der Wachstumsfaktor. Diese Gleichung beschreibt einen neuen Funktionstyp. Bei diesen Funktionen steht die Variable x im Exponenten, daher heißen diese Funktionen Exponentialfunktionen. | Bei den Beispielen zum exponentiellen Wachstum war der Term immer von der Form <math>y = b \cdot a^x</math>. Dabei war b der Anfangsbestand und a der Wachstumsfaktor. Diese Gleichung beschreibt einen neuen Funktionstyp. Bei diesen Funktionen steht die Variable x im Exponenten, daher heißen diese Funktionen Exponentialfunktionen. | ||
Version vom 23. Februar 2021, 14:46 Uhr
Bei den Beispielen zum exponentiellen Wachstum war der Term immer von der Form
. Dabei war b der Anfangsbestand und a der Wachstumsfaktor. Diese Gleichung beschreibt einen neuen Funktionstyp. Bei diesen Funktionen steht die Variable x im Exponenten, daher heißen diese Funktionen Exponentialfunktionen.
|
Merke:
Die Funktion |
Aus den Beispielen kennst du, dass x irgendeine reelle Zahl, also eine negative oder positive Zahl oder 0 sein kann.
Wenn a=0 wäre, was ist dann 0^0 oder 0-1?
00 ist nicht definiert, ebenso wäre
ein nicht definierter Term.
Wenn a eine negative Zahl wäre, z.B. a = -2, was ist dann
?
Für a = -2 hätte man den Term
, was in den reellen Zahlen nicht möglich ist, dies ist nicht definiert.
2. Wenn a > 1 ist, dann hat man eine monoton steigenden Graphen, wenn a < 1 ist, dann ist der Graph monoton fallend.
3. Alle Graphen haben den Punkt (0;1) gemeinsam.
4. Es ist
, daher ist diese Funktion die konstante 1, also die Funktion, die jedem x fir Zahl 1 zuordnet.30px Merke
Bei einem Funktionsgraphen geht man bei der Betrachtung immer in x-Richtung von links nach rechts, d.h. die x-Werte nehmen zu, sie werden größer. Beim grünen Graphen werden die y-Werte immer größer, wenn die x-Werte auch größer werden, der grüne Graph ist streng monoton steigend, |
(bc ∈ R+\{0}, a ∈ R+) heißt Exponentialfunktion zur Basis a.
gemeinsam?
?

