M9 Aufgaben zur Trigonometrie: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 59: Zeile 59:
 
f) <math>cos(\varphi)=0,866, tan(\varphi)=0577</math>  }}
 
f) <math>cos(\varphi)=0,866, tan(\varphi)=0577</math>  }}
  
{{Aufgaben-blau|3|2=Buch S. 138 / 3 a - e }}
+
{{Aufgaben-blau|3|2=Buch S. 138 / 3 a - e <br>
 +
Buch S. 138 / 5 a, b}}
  
{{Lösung versteckt|1=a) Im Dreieck sind An- und Gegenkathete zum Winkel <math>\beta</math>. Also <math>tan(\beta)=\frac{2cm}{6cm}=\frac{1}{3}</math> ergibt <math>\beta = 18,4^o</math>.
+
{{Lösung versteckt|1=138/3a) Im Dreieck sind An- und Gegenkathete zum Winkel <math>\beta</math>. Also <math>tan(\beta)=\frac{2cm}{6cm}=\frac{1}{3}</math> ergibt <math>\beta = 18,4^o</math>.
  
 
b) Zum Winkel 25<sup>o</sup> ist die Hypotenuse gegeben. Gesucht ist seine Gegenkathete. Also <math>sin(25^o)=\frac{x}{7cm} \rightarrow x = 7cm \cdot sin(25^)=3,0cm</math>.
 
b) Zum Winkel 25<sup>o</sup> ist die Hypotenuse gegeben. Gesucht ist seine Gegenkathete. Also <math>sin(25^o)=\frac{x}{7cm} \rightarrow x = 7cm \cdot sin(25^)=3,0cm</math>.
Zeile 80: Zeile 81:
 
Im rechten Dreieck ist die Gegenkathete zum 12<sup>o</sup>-Winkel gesucht und die Ankathete gegeben. Also <math>tan(12^o)=\frac{x}{7,2cm} \rightarrow x = 7,2cm \cdot tan(12^o)=1,5cm</math>
 
Im rechten Dreieck ist die Gegenkathete zum 12<sup>o</sup>-Winkel gesucht und die Ankathete gegeben. Also <math>tan(12^o)=\frac{x}{7,2cm} \rightarrow x = 7,2cm \cdot tan(12^o)=1,5cm</math>
  
Da es sich hier um ein Parallelogramm handelt, hätte man x auch mit dem Satz von Pythagoras berechnen können. }}
+
Da es sich hier um ein Parallelogramm handelt, hätte man x auch mit dem Satz von Pythagoras berechnen können.  
  
{{Aufgaben-blau|4|2=Buch S. 138 / 5 a, b }}
+
---------------------------------------
  
{{Lösung versteckt|1=a) Als Skizze nimmt man das rechte Dreieck. Man sieht, dass man h<sub>b</sub> berechnen kann. Es ist <math>sin(\gamma)=\frac{h_b}{a} \rightarrow h_b=a\cdot sin(\gamma)=4cm \cdot sin(45^o)=4cm \cdot \frac{1}{2}\sqrt 2=2\sqrt 2cm\approx 2,8cm</math> <br>
+
138/5a) In dem Dreieck sind a, b, und <math>\gamma</math> gegeben, also nimmt man als Überlegungsfigur das rechte Dreieck. Man sieht, dass man h<sub>b</sub> berechnen kann. Es ist <math>sin(\gamma)=\frac{h_b}{a} \rightarrow h_b=a\cdot sin(\gamma)=4cm \cdot sin(45^o)=4cm \cdot \frac{1}{2}\sqrt 2=2\sqrt 2cm\approx 2,8cm</math> <br>
 
Damit ist der Flächeninhalt <math>A = \frac{1}{2}bh_b=\frac{1}{2}\cdot 7cm \cdot 2\sqrt 2cm =7\sqrt 2 cm^2\approx 9,9cm^2</math>
 
Damit ist der Flächeninhalt <math>A = \frac{1}{2}bh_b=\frac{1}{2}\cdot 7cm \cdot 2\sqrt 2cm =7\sqrt 2 cm^2\approx 9,9cm^2</math>
 +
 +
b) Im Dreieck sind b, C und amath>\alpha</math> gegeben, also nimmt man das linke Dreieck als Überlegungsfigur. Man kann h<sub>c</sub> berechnen. Es ist <math>sin(\alpha)=\frac{h_c}{b} \rightarrow h_c = b\cdot sin(\alpha)=6cm \cdot sin(60^o)=6cm \cdot \frac{1}{2}\sqrt 3 = 3 \sqrt 3 cm \approx 5,2cm</math>.<br>
 +
Der Flächeninhalt ist <math>A=\frac{1}{2}ch_c=\frac{1}{2}\cdot 4cm \cdot 3\sqrt 3cm =6\sqrt 3 cm^2\approx 10,4cm^2</math> }}
 +
 +
{{Aufgaben-blau|4|2= }}

Version vom 22. April 2021, 11:09 Uhr

Ordne richtig zu

cos(45^o)

sin(30^o)

tan(45^o)

sin(85^o)

cos(20^o)

 sin(30^o)

0

 cos(75^o) - sin(15^o)sin(45^o)0,5sin(0^o) +  sin(90^o)sin(80^o)cos(60^o)cos(5^o)


Bleistift 35fach.jpg   Aufgabe 1

Im Einheitkreis (Kreis um den Ursprung mit Radius r = 1) ist das Dreieck ABC eingezeichnet.
250ox
1. Welche Länge hat die Hypotenuse c?
2. Bestimme sin(\alpha), cos(\alpha).
3. Stelle die Gleichung zum Satz des Pythagoras auf. Verwende die Ergebnisse von 1. und 2. Welche Beziehung zwischen sin(\alpha) und cos(\alpha) erhältst du?

[Lösung anzeigen]

Maehnrot.jpg
Merke:


(sin(\alpha))^2 + (cos(\alpha))^2 = 1


Bleistift 35fach.jpg   Aufgabe 2

1. Löse (sin(\alpha))^2 + (cos(\alpha))^2 = 1 nach sin(\alpha) bzw. cos(\alpha) auf.

2. Berechne ohne Ermittlung des Winkels \varphi für
a) sin(\varphi)= 0,25 die Werte von cos(\varphi), tan(\varphi).
b) cos(\varphi)= 0,5 die Werte von sin(\varphi), tan(\varphi).
c) tan(\varphi)= 1 die Werte von sin(\varphi), cos(\varphi).
d) sin(\varphi)= 0,11 die Werte von cos(\varphi), tan(\varphi).
e) cos(\varphi)= 0,72 die Werte von sin(\varphi), tan(\varphi).
f) sin(\varphi)= 0,5 die Werte von cos(\varphi), tan(\varphi).

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 3

Buch S. 138 / 3 a - e
Buch S. 138 / 5 a, b

[Lösung anzeigen]


Bleistift 35fach.jpg   Aufgabe 4