Abstands- und Winkelbestimmungen: Unterschied zwischen den Versionen
Aus RSG-Wiki
Zeile 5: | Zeile 5: | ||
Wir kennen die Normalenform einer Ebenengleichung. <math>\vec{n} \circ (\vec{x} - \vec{a})=0</math>.<br> | Wir kennen die Normalenform einer Ebenengleichung. <math>\vec{n} \circ (\vec{x} - \vec{a})=0</math>.<br> | ||
Normiert man den Normalenvektoer <math>\vec{n}</math>, also <math>\vec{n}^o =\frac{\vec{n}}{\vert \vec{n} \vert}</math>, dann erhält man einen Vektor <math>\vec{n}^o</math>, der die gleiche Richtung wie der Normalenvektor <math>\vec{n}</math> und die Länge <math>\vert \vec{n}^o \vert =\frac{\vert \vec{n} \vert}{\vert \vec{n} \vert}=1</math> hat.<br> | Normiert man den Normalenvektoer <math>\vec{n}</math>, also <math>\vec{n}^o =\frac{\vec{n}}{\vert \vec{n} \vert}</math>, dann erhält man einen Vektor <math>\vec{n}^o</math>, der die gleiche Richtung wie der Normalenvektor <math>\vec{n}</math> und die Länge <math>\vert \vec{n}^o \vert =\frac{\vert \vec{n} \vert}{\vert \vec{n} \vert}=1</math> hat.<br> | ||
− | Mit dem Vektor <math>\vec{n}^o</math> erstellt man ebenso eine Normalenform <math>\vec{n}^o \circ (\vec{x} - \vec{a})=0</math> der Ebene. | + | Mit dem Vektor <math>\vec{n}^o</math> erstellt man ebenso eine Normalenform <math>\vec{n}^o \circ (\vec{x} - \vec{a})=0</math> der Ebene. Man kann dies umformen und in Koordinatenschreibweise angeben:<br> |
+ | <math>\vec{n}^o \circ (\vec{x} - \vec{a})= \frac{\vec{n} \circ (\vec{x} - \vec{a})}{\vert \vec{n} \vert} = \frac{n_1 x_1+n_2 x_2 + n_2 x_3-(n_1 a_1 + n_2 a_2 + n_3 a_3)}{\vert \vec{n} \vert} = 0</math> | ||
+ | |||
+ | {{Aufgaben-blau||2= | ||
+ | |||
+ | }} | ||
+ | |||
+ | Für die Hessesche Normalform muss außerdem gelten, dass <math>\vec{n} \circ \vec{a} > 0</math> ist. Das ist so festgelegt. |
Version vom 22. März 2020, 09:05 Uhr
Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.
Hintergrund zur Hesseschen Normalenform:
Wir kennen die Normalenform einer Ebenengleichung. .
Normiert man den Normalenvektoer , also , dann erhält man einen Vektor , der die gleiche Richtung wie der Normalenvektor und die Länge hat.
Mit dem Vektor erstellt man ebenso eine Normalenform der Ebene. Man kann dies umformen und in Koordinatenschreibweise angeben:
Für die Hessesche Normalform muss außerdem gelten, dass ist. Das ist so festgelegt.