M9 Potenzen mit rationalen Exponenten: Unterschied zwischen den Versionen
Zeile 145: | Zeile 145: | ||
f) <math>7776=32\cdot 243=2^5 \cdot 3^5</math>. Damit ist <math>\sqrt [4]{7776}=\sqrt [4]{2^5\cdot 3^5}=2\cdot3\cdot\sqrt[5]{2\cdot 3}=6\sqrt[4]{6}</math> }} | f) <math>7776=32\cdot 243=2^5 \cdot 3^5</math>. Damit ist <math>\sqrt [4]{7776}=\sqrt [4]{2^5\cdot 3^5}=2\cdot3\cdot\sqrt[5]{2\cdot 3}=6\sqrt[4]{6}</math> }} | ||
− | {{Aufgaben-blau|6|2=Und nun geht es | + | {{Aufgaben-blau|6|2=Und nun geht es zum Üben der Potenzgesetze: Buch S. 116 / 7 }} |
{{Lösung versteckt|1=a) <math>3^{\frac{1}{2}}\cdot 3^{\frac{1}{3}}=3^{\frac{3+2}{6}}=3^{\frac{5}{6}}=\sqrt[6]{3^5}=\sqrt[6]{243}</math>;<br> | {{Lösung versteckt|1=a) <math>3^{\frac{1}{2}}\cdot 3^{\frac{1}{3}}=3^{\frac{3+2}{6}}=3^{\frac{5}{6}}=\sqrt[6]{3^5}=\sqrt[6]{243}</math>;<br> | ||
Zeile 172: | Zeile 172: | ||
... = <math> b^{\frac{7}{6}}</math> | ... = <math> b^{\frac{7}{6}}</math> | ||
− | }} | + | f) ... = <math>\sqrt [3]{18}=18^{\frac{1}{3}}</math><br> |
+ | ... = <math> \sqrt [5]{243} = 3</math><br> | ||
+ | ... = <math> \sqrt [4]{16}=2</math><br> | ||
+ | ... = <math> 1</math> - es ist stets <math>a^0 = 1</math> | ||
+ | |||
+ | g) <math>\sqrt {\sqrt [3]{6}}=\left ( 6^{\frac{1}{3}} \right ) ^{\frac{1}{2}}=6^{\frac{1}{3}\cdot \frac{1}{2}}=6^{\frac{1}{6}}=\sqrt [6]{6}</math><br> | ||
+ | ... = <math>512^{\frac{1}{9}}=(2^9)^\frac{\frac{1}{9}}=2^{\frac{9}{9}}=2</math><br> | ||
+ | ... = <math> (2^5)^{\frac{1}{20}}=2^{5\cdot \frac{1}{20}}=2^{\frac{1}{4}}=\sqrt [4]{2}</math><br> | ||
+ | ... = <math>(a^{12})^{\frac{1}{12}}=a^{12\cdot \frac{1}{12}}=a</math> }} |
Version vom 11. März 2021, 11:18 Uhr
Merke:
Für die allgemeine Wurzel kann man auch eine Potenz schreiben. Es ist für a , n N \ {1} Weiter ist Insbesondere ist |
Beispiele:
|
Sind r und s rationale Zahlen, dann schreibt es sich einfacher
|
Beispiele:
Vereinfache so weit als möglich:
Radiziere so weit als möglich (teilweises Radizieren)
Noch ein paar Tipps bevor es ans Rechnen geht! Wenn ein Minuszeichen im Exponenten steht, dann beachte, dass ist. Bei der Einführung der rationalen Exponenten ist . Hier sieht man, dass der Nenner n des Exponenten für die Wurzel zuständig ist und der Zähler m potenziert. Am Beispiel sieht man, dass oft der zweite Weg der günstigere ist:
|
a) )
b) Es ist oft sinnvoll zuerst die Wurzel zu ziehen (Nenner) und dann zu Potenzieren (Zähler).
c) Auch hier zuerst (mit den Nenner) radizieren und dann (mit dem Zähler) potenzieren.
d)
116/2 a)
b)
c)
116/3 a)
b)
c) - Die Basis soll eine natürliche Zahl sein!
d)
e)
a) . Damit ist
b) . Damit ist
c) Damit ist
d) . Damit ist
e) . Damit ist
a) ;
... =
... =
b)
... =
... =
c)
... =
... =
... = - in der Klammer steht eine Wurzel und Wurzelziehen und Quadrieren heben sich auf!
d)
e)
... =
... =
... =
f) ... =
... =
... =
... = - es ist stets
g)
... =
... =