Abstands- und Winkelbestimmungen: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
 
Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.
 
Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.
  
Hintergrund zur Hesseschen Normalenform (HNF):
+
'''Die Hesseschen Normalenform (HNF)'''
  
 
Wir kennen die Normalenform einer Ebenengleichung. <math>\vec{n} \circ (\vec{x} - \vec{a})=0</math>.<br>
 
Wir kennen die Normalenform einer Ebenengleichung. <math>\vec{n} \circ (\vec{x} - \vec{a})=0</math>.<br>
Zeile 35: Zeile 35:
  
  
Normiert man den Normalenvektor <math>\vec{n}</math> und geht vom Lot
+
 
 +
Nun zur Normierung des Normalenvektors:
 +
 
 +
In diesem Bild ist ein Punkt P außerhalb der Ebene E gegeben. A ist in diesem Fall der Lotfußpunkt des Lotes von P auf E. (Den Lotfußpunkt erhält man, indem man von P aus in Richtung des Normalenvektors der Ebene E geht und den Schnittpunkt der Lotgeraden <math>l: \vec{x}=\vec{p} + k \vec{n}</math> mit der Ebene E bestimmt.)<br>
 +
[[Datei:Hnf1.jpg|HNF_1|300px]]<br>
 +
Geht man von A in Richtung P, so ist der Vektor <math>\vec{AP}=\vec{n}</math> und der Punkt P hat von der Ebene E den Abstand <math>\vert \vec{AP} \vert </math>. Normiert man den Normalenvektor so erhält man <math>\vec{n}^o =\frac{\vec{n}}{\vert \vec{n} \vert}</math> und es ist dann <math> \vec{AP}= \vert \vec{n} \vert \cdot\vec{n}^o </math>. Der Zahlenwert bei <math>\vec{n}^o</math> gibt dann den Abstand des Punktes P von der Ebene E an.
 +
 
 +
Nun ist <math>\vec{AP}=\vec{p}-\vec{a}</math> und damit <math> n = \vec{n}^o \circ \vec{} = \vec{n}^o \circ \vec{AP}=\vec{n}^o \circ \vec{p}-\vec{a} </math>, was dem Term in der HNF entspricht. <br>
 +
Dies war nun die Überlegung, wenn der Punkt P senkrecht zur Ebene E über dem Stützpunkt A liegt.
 +
 
 +
Was macht man, wenn dies nicht der Fall ist?<br>
 +
[[Datei:Hnf1b.jpg|HNF_3|400px]]

Version vom 22. März 2020, 10:37 Uhr

Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.

Die Hesseschen Normalenform (HNF)

Wir kennen die Normalenform einer Ebenengleichung. \vec{n} \circ (\vec{x} - \vec{a})=0.
Normiert man den Normalenvektoer \vec{n}, also \vec{n}^o =\frac{\vec{n}}{\vert \vec{n} \vert}, dann erhält man einen Vektor \vec{n}^o, der die gleiche Richtung wie der Normalenvektor \vec{n} und die Länge \vert \vec{n}^o \vert =\frac{\vert \vec{n} \vert}{\vert \vec{n} \vert}=1 hat.
Mit dem Vektor \vec{n}^o erstellt man ebenso eine Normalenform \vec{n}^o \circ (\vec{x} - \vec{a})=0 der Ebene. Man kann dies umformen und in Koordinatenschreibweise angeben:
\vec{n}^o \circ (\vec{x} - \vec{a})= \frac{\vec{n} \circ (\vec{x} - \vec{a})}{\vert \vec{n} \vert} = \frac{n_1 x_1+n_2 x_2 + n_2 x_3-(n_1 a_1 + n_2 a_2 + n_3 a_3)}{\vert \vec{n} \vert}  = 0

Für die Hessesche Normalform (HNF) muss außerdem gelten, dass \vec{n} \circ \vec{a} > 0 ist. Das ist so festgelegt. In der HNF in Koordinatenschreibweise muss also vor der Konstanten \vec{n} \circ \vec{a} > 0 ein Minuszeichen stehen!


Bleistift 35fach.jpg   Aufgabe 1

Geben Sie die Hessesche Normalenform an:
a) 2x1+ x2 - 2x3 - 4 = 0
b) 3x1+ x2 - 20x3 + 45 = 0

a) \frac{2 x_1+ x_2 -2  x_3 - 4}{3}  = 0

b) -\frac{3 x_1 + x_2 -20 x_3 + 45}{\sqrt{410}}  = 0 Beachten Sie das Minuszeichen vor dem Bruch. Man kann dieses Minuszeichen in den Zähler bringen und hat dann diese HNF \frac{-3 x_1 - x_2 + 20 x_3 - 45}{\sqrt{410}}  = 0


Bleistift 35fach.jpg   Aufgabe 2

Für die erste Ebene steht in der Normalenform -4, also ist das Skalarprodukt \vec{n} \circ \vec{a} = 4, positiv.
Betrachten Sie für diese Ebene den den Normalenvektor \vec{n} und den Vektor \vec{a} . Hier ist der Normalenvektor \vec{n} = \vec{AP} .
HNF_1
Was stellen Sie fest?

Die Ebene E teilt den Raum in zwei Halbräume. Man sieht, dass beide Vektoren vom Urprung aus in die gleiche durch die Ebene E erzeugten Halbraum zeigen. \vec{n} und  \vec{a} haben in etwa "die gleiche Richtung", das Skalarprodukt ist positiv.


Die Festlegung \vec{n} \circ \vec{a} > 0 bedeutet anschaulich, dass vom Ursprung aus die \vec{n} und  \vec{a} haben in etwa "die gleiche Richtung" haben.


Bleistift 35fach.jpg   Aufgabe 3

Die Ebene 3x1+ x2 - 20x3 + 45 = 0 ist die Ebene E aus Aufgabe 147/16. Für diese Ebene stellt sich die Situation so dar.
HNF_2
Was stellen Sie hier fest?

Hier sieht man, dass die Vektoren \vec{n} und  \vec{a} in verschiedene durch die Ebene E erzeugten Halbräume zeigen. Ihr Zwischenwinkel ist > 90°. Also ist ihr Skalarprodukt negativ und in der Normalenform steht -(-45) = 45. Dann muss man für die HNF das Vorzeichen ändern, indem man vor den Bruch ein Minuszeichen schreibt. dies ist in Aufgabe 1 erfolgt.


Nun zur Normierung des Normalenvektors:

In diesem Bild ist ein Punkt P außerhalb der Ebene E gegeben. A ist in diesem Fall der Lotfußpunkt des Lotes von P auf E. (Den Lotfußpunkt erhält man, indem man von P aus in Richtung des Normalenvektors der Ebene E geht und den Schnittpunkt der Lotgeraden l: \vec{x}=\vec{p} + k \vec{n} mit der Ebene E bestimmt.)
HNF_1
Geht man von A in Richtung P, so ist der Vektor \vec{AP}=\vec{n} und der Punkt P hat von der Ebene E den Abstand \vert \vec{AP} \vert . Normiert man den Normalenvektor so erhält man \vec{n}^o =\frac{\vec{n}}{\vert \vec{n} \vert} und es ist dann  \vec{AP}= \vert \vec{n} \vert \cdot\vec{n}^o . Der Zahlenwert bei \vec{n}^o gibt dann den Abstand des Punktes P von der Ebene E an.

Nun ist \vec{AP}=\vec{p}-\vec{a} und damit  n = \vec{n}^o \circ \vec{} = \vec{n}^o \circ \vec{AP}=\vec{n}^o \circ \vec{p}-\vec{a} , was dem Term in der HNF entspricht.
Dies war nun die Überlegung, wenn der Punkt P senkrecht zur Ebene E über dem Stützpunkt A liegt.

Was macht man, wenn dies nicht der Fall ist?
HNF_3