M9 Anwendungen und Aufgaben zu quadratischen Funktionen

Aus RSG-Wiki
Version vom 3. Februar 2021, 17:41 Uhr von Karlhaberl (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Extremwertaufgaben

Einem gleichseitigen Dreieck der Seitenlänge 6cm wird ein Rechteck so einbeschrieben, dass eine Rechteckseite l auf einer Dreieckseite liegt und die anderen Eckpunkte des Rechtecks auf den beiden anderen Dreieckseiten liegen. Im folgenden Applet ist die Situation dargestellt. Die Rechteckseite l liegt auf der Dreieckseite [AB].

Den Punkt E kann man auf der Dreieckseite [AB] bewegen. Dadurch ändert sich das Rechteck der Aufgabe. Über dem Wert der Rechteckseite l wird der Flächeninhalt A_R des Rechtecks aufgetragen. Dies ergibt im Applet den Punkt A_R. Wenn man die Lage des Punktes E ändert, ändert sich auch die Rechteckfläche und der Punkt A_R wandert. Der Punkt A_R hat die Koordinaten A_R(l;A_R(l))
Das Rechteck hat Flächeninhalt 0, wenn l = 0 oder l = 6 ist. Gibt es ein Rechteck mit größtem Flächeninhalt?

Für den Punkt A_R im Applet kann man die Spur anzeigen, die sich ergibt, wenn E bewegt wird. Man sieht, dass die Spur eine Parabel ergibt, deren Scheitel bei l = 3 liegt. Man kann auch den Wert von A_R zu A_R(3)=7,8 ablesen.
Da der Flächeninhalt A_R des einbeschriebenen Rechtecks von der Seitenlänge l abhängt, kann man eine Funktion A_R :l \rightarrow A_R(l) angeben, die für jeden Wert von l \in [0;6] den Wert A_R(l) angibt. Für diese Funktion gilt es nun den Funktionsterm zu bestimmen.
Der Punkt E kann vom Ursprung bis zum Mittelpunkt der Dreiecksseite [AB] gehen. Seine Koordinaten sind daher E(3-\frac{l}{2};0).
Die Dreiecksseite [AC] ist Teil einer Gerade, deren Geradengleichung y = mx + t wir bestimmen wollen. Da sie durch den Ursprung geht ist t = 0. Also müssen wir noch die Steigung m der Geraden bestimmen. Da das Dreieck ABC ein gleichseitiges Dreieck ist, wissen wir seit wir den Satz des Pythagoras kennen, dass die Höhe im gleichseitigen Dreieck mit der Seitenlänge a h=\frac{a}{2}\sqrt 3 ist.

GleichseitigesDreieck.jpg

Die Steigung m ist dann m=\frac{\frac{a}{2}\sqrt 3}{\frac{a}{2}}=\sqrt 3
Die Gerade hat also die Gleichung y = \sqrt 3 x.