M11 Ableitung der Logarithmusfunktionen
Die Ableitung der ln-Funktion erhält man aus der Tatsache, dass die ln-Funktion Umkehrfunktion zur e-Funktion ist. Für
ist
die Umkehrfunktion. Damit ist
. Für die Ableitung gilt hier (
und mittels der Kettenregel erhält man
. Dies führt wieder zur Formel für die Ableitung der Umkehrfunktion
.
Die Ableitung der e-Funktion ist
.
Damit erhält man für die Umkehrfunktion
als Ableitung:
.
Also ist die Ableitung der natürlichen Logarithmusfunktion
.
Im folgenden Applet kann man diese Aussage über die Ableitung der natürlichen Logarithmusfunktion
verifizieren. Über dem x-Wert des Punktes auf dem Graphen der ln-Funktion wird die Steigung der Tangente in dem Punkt an den Graphen angetragen. Dieser Punkt liegt auf der Hypberbel
.
|
Merke:
Die Ableitung von |
Mit der Kettenregel erhält man
a) Mit z = 4x ist 
Oder mit den Rechengesetzen des Logarithmus ist f(x) = ln(4) + ln(x) und die Ableitung ist 
b) Es ist 
Damit ist mit z = x2+5 die Ableitung 
Oder mit
ist
.
c) mit z = cos(x) ist 
a) D = R\{0},
, 
Oder mit ln(x2) = 2ln(x) erhält man
.
b) 2x + 3 > 0 ergibt x > -1,5, also D = ]-1,5;
[,
, 
c) D = R+,
, 
d) D = R+,
, f'(e) = 1
e) D = R+;
,
.
f) D = R+,
,
g) Hier muss man bei der Bestimmung der Definitionsmenge darauf achten, wo das Argument des Logarithmus positiv ist. Dies ist der Fall, wenn Zähler und Nenner beide positiv oder beide negativ sind.
x-1 > 0 und x+1 > 0 ist für x > 1 bzw. x > -1, also x > 1 der Fall.
x-1 < 0 und x+1 < 0 ist für x < 1 bzw. x < -1, also x < -1 der Fall. Damit ist D=]
;-1[
]1;
[.
, 
hat folgende Eigenschaften:
ist
.
ist 



für cos(x) > 0
, x0 = 2
, x0 = e-4
, x0 = -e
.

