Abstands- und Winkelbestimmungen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche

Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.

Hintergrund zur Hesseschen Normalenform (HNF):

Wir kennen die Normalenform einer Ebenengleichung. \vec{n} \circ (\vec{x} - \vec{a})=0.
Normiert man den Normalenvektoer \vec{n}, also \vec{n}^o =\frac{\vec{n}}{\vert \vec{n} \vert}, dann erhält man einen Vektor \vec{n}^o, der die gleiche Richtung wie der Normalenvektor \vec{n} und die Länge \vert \vec{n}^o \vert =\frac{\vert \vec{n} \vert}{\vert \vec{n} \vert}=1 hat.
Mit dem Vektor \vec{n}^o erstellt man ebenso eine Normalenform \vec{n}^o \circ (\vec{x} - \vec{a})=0 der Ebene. Man kann dies umformen und in Koordinatenschreibweise angeben:
\vec{n}^o \circ (\vec{x} - \vec{a})= \frac{\vec{n} \circ (\vec{x} - \vec{a})}{\vert \vec{n} \vert} = \frac{n_1 x_1+n_2 x_2 + n_2 x_3-(n_1 a_1 + n_2 a_2 + n_3 a_3)}{\vert \vec{n} \vert}  = 0

Für die Hessesche Normalform (HNF) muss außerdem gelten, dass \vec{n} \circ \vec{a} > 0 ist. Das ist so festgelegt. In der HNF muss also vor der Konstanten \vec{n} \circ \vec{a} > 0 ein Minuszeichen stehen!


Bleistift 35fach.jpg   Aufgabe

Geben Sie die Hessesche Normalenform an:
a) 2x1+ x2 - 2x3 - 4 = 0 b) 3x1+ x2 - 20x3 + 45 = 0

a) \frac{2 x_1+ x_2 -2  x_3 - 4}{3}  = 0

b) -\frac{3 x_1 + x_2 -20 x_3 + 45}{\sqrt{410}}  = 0 Beachten Sie das Minuszeichen vor dem Bruch. Man kann dieses Minuszeichen in den Zähler bringen und hat dann diese HNF \frac{-3 x_1 - x_2 + 20 x_3 - 45}{\sqrt{410}}  = 0