M8 Term und Graph bei gebrochen-rationalen Funktionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche

Auf dieser Seite soll der Zusammenhang zwischen dem Graphen und dem Funktionsterm einer gebrochen-rationalen Funktion näher untersucht werden. Dabei geht es um zwei Fragestellungen:
1. Wie finde ich aus einem gegebenen Graphen den passenden Funktionsterm.
2. Wie kann man "leicht" aus einem gegebenen Funktionsterm den Graphen angeben.

Zur Beantwortung sind die folgenden Eigenschaften gebrochen-rationaler Funktionen hilfreich.
Ausgangspunkt unserer Betrachtungen ist die indirekte Proportionalität f: x \rightarrow \frac{1}{x} . Die Funktion ist für  x \in Q\setminus \left \{ 0 \right \} definiert. Die Funktionsgleichung ist  y = \frac{1}{x} und der Funktionsgraph

1-x-.jpg


Inhaltsverzeichnis

Definitionslücke - Polstelle - senkrechte Asymptote

Vorzeichenwechsel

Spiegelung an der x-Achse

Streckung und Stauchung

waagrechte Asymptote