M11 Ableitung der trigonometrischen Funktionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche

Inhaltsverzeichnis

Die Ableitung der Sinusfunktion

In dem folgenden Applet wird zu jedem Punkt P auf dem Graph der Sinusfunktion f:x \to sin(x) über der x-Koordinate von P die Steigung der Tangente aufgetragen. Bewegt man P auf dem Graphen, dann wird die Spur von A angezeigt.

Maehnrot.jpg
Merke:

Die Ableitung der Sinusfunktion ist die Kosinusfunktion. Es ist (sin (x))' = cos (x) .

Im Buch ist auf S. 137 unter 2. die Herleitung über die Definition der Ableitung nachzusehen

Die Ableitung der Kosinusfunktion

Maehnrot.jpg
Merke:

Die Ableitung der Kosinusfunktion ist die negative Sinusfunktion. Es ist (cos (x))' = - sin (x) .

Man erhält die Ableitung der Kosinusfunktion auch mit Hilfe der Kettenregel. Es ist  cos(x)=sin(\frac{\pi}{2}-x) und  sin(x)=cos(\frac{\pi}{2}-x). Damit ist die Ableitung (cos(x))'=(\left ( sin(\frac{\pi}{2}-x) \right)' =cos(\frac{\pi}{2}-x) \cdot (-1)= - cos(\frac{\pi}{2}-x)=- sin(x)



Die Ableitung der Tangensfunktion

Man weiß  tan(x)=\frac{sin(x)}{cos(x)}. Mit der Quotientenregel kann man tan(x) ableiten. Es ist (tan(x))'=\frac{cos(x)\cdot cos(x) - sin(x)\cdot (-sin(x))}{(cos(x))^2}=\frac{(cos(x))^2+(sin(x))^2}{(cos(x))^2}=\frac{1}{(cos(x))^2}

Maehnrot.jpg
Merke:

Die Ableitung der Tangensfunktion ist (tan(x))'= \frac{1}{(cos(x))^2} .


Stammfunktionen

Maehnrot.jpg
Merke:

Die Menge aller Stammfunktionen F der

  • Sinusfunktion f:x \to sin(x) ist F:x \to - cos(x) + C
  • Kosinusfunktion f:x \to cos(x) ist F:x \to sin(x) + C

Die Stammfunktionen weist man nach, indem man sie ableitet:

  • \left ( - cos(x) + C \right )' = sin(x)
  • \left ( sin(x) + C \right )' = cos(x).

Aufgaben

Nuvola apps kig.png   Merke

Zur Wiederholung:

sin(-x) = - sin(x) und cos(-x) = cos(x)

(sin x)^2 + (cos x)^2 = 1

 sin(x) = cos(\frac{\pi}{2} - x) und cos(x) = sin(\frac{\pi}{2} - x)

tan(x) = \frac{sin(x)}{cos(x)}


Bleistift 35fach.jpg   Aufgabe 1

Buch S. 134 / 1

a) y' = - sin(x-3)
b) y' = cos(x2)· 2x = 2x cos(x2)
c) y' = cos(x) · cos(x) + sin(x) · (-cos(x)) = (cos(x))2 - (sin(x))2
d) y' = 2 sin(x) · cos(x) (nachdifferenzieren!)
e) y' = 2 cos(x) · ( - sin(x)) = - 2 sin(x)·cos(x)
f) y' = - a· sin(ax + b)
g) y' = 2x · sin(x) + x2 · cos(x)
h) Es ist 1 - (sin x)2 = (cos x)2. Daher ist y' = ((cos x)4)' = 4·(cos x)3· ( - sin x) = - 4 sin x · (cos x)3.
i) y' = 0
j) y' = 3x^2 + 2x\cdot sin(\frac{3}{2}\pi) + cos(\pi)=3x^2 - 2x -1
k) y' = \frac{-sin(x) sin(x) - cos(x)cos(x)}{(sin(x))^2}= \frac{-1}{(sin(x))^2}
l) y' = 2[1- sin(2x)] · [ - 2 cos(2x)] oder y = (cos(2x))2 und y' = 2·cos(2x)·(-2sin(x))
m) y' = 0
n) y' = \frac{sin(x) - x \cdot cos(x)}{(sin(x))^2}
o) y' = -sin(\frac{1}{x})\cdot (-\frac{1}{x^2})=\frac{sin(\frac{1}{x})}{x^2}
p) y' = cos(\frac{\pi}{3}x)\cdot \frac{\pi}{3}

q) y' = \frac{1}{(cos(x))^2}