M9 Potenzen mit rationalen Exponenten
|
Merke:
Für die allgemeine Wurzel ![]() Weiter ist Insbesondere ist |
Beispiele:
![27^{\frac{1}{3}} = \sqrt[3]{27} = 3](/images/math/6/e/8/6e8b5f8071aa6a25cb0f202b8ba28051.png)
![8^{\frac{2}{3}} = \sqrt[3]{8^2} = \sqrt [3]{64}=4](/images/math/a/9/9/a9981ffa899cb5fc81666a32ca3ae621.png)
![512^{\frac{1}{9}} = \sqrt[9]{512} = 2](/images/math/e/8/0/e804c035be7a66369ae590d14c7ec8c6.png)
![625^{\frac{1}{4}} = \sqrt[4]{625} = 5](/images/math/a/2/f/a2ff86b33bcc0725236122aa44d36741.png)
![625^{-\frac{1}{4}} = \sqrt[4]{625^{-1}} = \sqrt[4]{\frac{1}{625}}=\frac{1}{5}](/images/math/d/6/9/d694859f313981c26eba156aa47b7e05.png)
![256^{\frac{3}{8}} = \sqrt[8]{256^3} = \sqrt[8]{(2^8)^3}=\sqrt[8]{2^{24}}=\sqrt[8]{(2^3)^8}=2^3=8](/images/math/e/8/e/e8e7596fa7f078fbeb49e31978f6cb6e.png)
|
Sind r und s rationale Zahlen, dann schreibt es sich einfacher
|
Beispiele:
Vereinfache so weit als möglich:
![\sqrt 5 \cdot \sqrt [3]{5}=5^{\frac{1}{2}}\cdot 5^{\frac{1}{3}}=5^{\frac{1}{2}+\frac{1}{3}}=5^{\frac{5}{6}}=\sqrt[6]{5^5}\approx 3,82](/images/math/d/e/f/def72b8ad37822f3f0f409f2eb94a9a2.png)
![6^{\frac{1}{2}}: 6^{\frac{1}{3}}=6^{\frac{1}{2}-\frac{1}{3}}=6^{\frac{1}{6}}=\sqrt[6]{6}\approx 1,35](/images/math/c/3/e/c3e6ac2a5eb7707c7b969c3de5077bc2.png)
![\sqrt 5 \cdot \sqrt [3]{25}=5^{\frac{1}{2}}\cdot 5^{\frac{2}{3}}=5^{\frac{1}{2}+\frac{2}{3}}=5^{\frac{7}{6}}=\sqrt[6]{5^7}=5\cdot\sqrt[6]{5}\approx 6,54](/images/math/b/f/3/bf329728c7f8298f22059fb411fcf813.png)
Radiziere so weit als möglich (teilweises Radizieren)
![\sqrt [5]{3072} = \sqrt [5]{3\cdot 1024}=\sqrt [5]{3\cdot 4^5}=4\cdot \sqrt[5]{3}\approx4,98](/images/math/5/2/f/52f6585e40e962fb46cddf2c2af38e0c.png)
30px Merke
Noch ein paar Tipps bevor es ans Rechnen geht! Wenn ein Minuszeichen im Exponenten steht, dann beachte, dass Bei der Einführung der rationalen Exponenten ist Am Beispiel |
a) ) ![81^{\frac{1}{4}} = \sqrt [4]{3^4}=3](/images/math/4/2/c/42c469c31e1c832e114f5e468b21b0b6.png)
![216^{\frac{1}{3}}=\sqrt [3]{6^3}=6](/images/math/e/2/0/e20883bf76c8c130e328ce78511e3942.png)

![32^{\frac{3}{5}}=(\sqrt[5]{2^5})^3=2^3=8](/images/math/c/b/8/cb800038fa4997b4530e2589dfde9907.png)
b) Es ist oft sinnvoll zuerst die Wurzel zu ziehen (Nenner) und dann zu Potenzieren (Zähler).
![10000^{-\frac{1}{4}}=\left ( \frac{1}{10000} \right )^{\frac{1}{4}}=\sqrt [4]{\frac{1}{10^4}}=\frac{1}{10}](/images/math/9/1/6/9161186f8280b741f29b4f4b2f4fed25.png)
![512^{\frac{2}{3}}=(\sqrt [3] {512}^2=8^2=64](/images/math/c/e/8/ce8fdb7b4cdda3e953c6a1ac3488b155.png)


c) Auch hier zuerst (mit den Nenner) radizieren und dann (mit dem Zähler) potenzieren.




d) ![-\left ( \frac{27}{64}\right) ^{\frac{1}{3}}=- \sqrt[3]{\frac{27}{64}}=-\frac{3}{4}](/images/math/d/9/6/d96b6c2510ade835f212a16f4f00c5b6.png)
![\left ( \frac{27}{64}\right) ^{-\frac{1}{3}}=\left ( \frac{64}{27}\right) ^{\frac{1}{3}}=\sqrt [3]{\frac{64}{27}}=\frac{4}{3}](/images/math/e/e/e/eeeb042d3fee85233de74dd860578fbf.png)

![- \left ( \frac{81}{256}\right) ^{-0,25}= - \left ( \frac{256}{81}\right) ^{\frac{1}{4}}=-\sqrt[4]{\frac{256}{81}}=-\frac{4}{3}](/images/math/9/e/b/9ebb19c0c0a90f95dcf75ccddfde9ded.png)
![-64^{\frac{1}{3}}=-\sqrt[3]{64}=-4](/images/math/e/9/5/e95b6edc78a145651183b7f3bf2f9eb9.png)
kann man nicht vereinfachen, da bei einer 4. Wurzel (geraden Wurzel) der Radikand nicht negativ sein darf!
kann man auch eine Potenz
schreiben. Es ist für a
, n
N \ {1}
![\sqrt[n]{a}=a^{\frac{1}{n}}](/images/math/e/c/8/ec88827417db352f94755f7f655c012e.png)









ist.
. Hier sieht man, dass der Nenner n des Exponenten für die Wurzel zuständig ist und der Zähler m potenziert.
zu berechnen:
, d.h. es wird zuerst die Basis mit m potenziert und dann die m-te Wurzel gezogen.
, d.h. man zieht zuerst aus der Basis die n-te Wurzel und potenziert dann.
sieht man, dass oft der zweite Weg der günstigere ist:
Hier blieben die Zahlen klein und überaschaubar.
Hier hilft nur noch der Taschenrechner, das ist im Kopf nicht machbar!

