M9 Aufgaben zur Trigonometrie am rechtwinkligen Dreieck
Sinus, Kosinus und Tangens kannst du nur in rechtwinkligen Dreiecken verwenden. Also suche dir bei den Aufgaben passende rechtwinklige Dreiecke, bei denen 2 Größen gegeben sind und rechne dann mit einer dieser Gleichungen
die Unbekannte aus. |
Buch S. 129 / 10
Das Dreieck SOA ist rechtwinklig. Zum Winkel kennt man die Gegenkathete 12m und die Ankathete 45m. Also erhält man mit den Winkel .
Nun kennt man im rechtwinkligen Dreieck SOB den Winkel und seine Ankathete 45m. Die Gegenkathete ist 12m + x. In dem Dreieck SOB ist also .
Buch S. 129 / 11
a)
Das gezeichnete Dreieck ist bei 100 rechtwinklig. Gesucht ist der Winkel zwischen der x-Achse und der Geraden. Die Gegenkathete des Winkels ist im Bild 10. Also hat man für den Winkel An- und Gegenkathete. Damit ist und
b) und
c) und
d) undBuch S. 129 / 13
a) Angaben: Es ist .
Setzt man für a und c die Terme aus den ersten beiden Gleichungen in die dritte Gleichung ein, so erhält man und .
a = 40cm, b = 10cm, c = 25cm
und
b) Die Länge der Flächendiagonale [AC] erhält man mit dem Satz von Pythagoras
Die Länge der Raumdiagonale [AG] erhält man als Folge des Satzes von Pythagoras
In dem rechtwinkligen Dreieck ACG ist und
Den Winkel hätte man auch mit Sinus oder Tangens berechnen können.
Es ist und