M10 Symmetrie
Es gibt zwei verschiedene Arten von Symmetrien zum Koordinatensystem:
Achsensymmetrie zur y-Achse
Der Graph einer Funktion f ist genau dann achsensymmetrisch zur y-Achse, wenn der Graph auf der linken Seite der y-Achse ein Spiegelbild der rechten Seite ist. Die y-Achse ist Symmetrieachse des Graphen von f.
Rechnerisch bedeutet dies, dass f(-x)=f(x) ist.
Merke:
Gilt für die Funktion f, dass f(-x) = f(x) ist, dann ist der Graph von f achsensymmetrisch zur y-Achse. |
Man überprüft das, indem man in den Funktionsterm von f statt x nun -x einsetzt. Wenn der Graph achsensymmetrisch zur y-Achse ist, dann muss man den gleichen Term f(x) wieder erhalten.
a) f(-x) = (-x)2 - 2 = x2 - 2 = f(x)
Punktsymmetrie zum Ursprung
Der Graph einer Funktion f ist genau dann punktsymmetrisch zum Ursprung, wenn man ihn um 180° drehen kann und man wieder den gleichen Graph erhält. Oder macht man zwei Achsenspiegelungen an der x-Achse und an der y-Achse und erhält wieder den Graphen von f.
Rechnerisch bedeutet dies, dass f(-x)= - f(x) ist.
Merke:
Gilt für die Funktion f, dass f(-x) = - f(x) ist, dann ist der Graph von f punktsymmetrisch zum Ursprung y-Achse. |
Man überprüft das, indem man in den Funktionsterm von f statt x nun -x einsetzt. Wenn der Graph achsensymmetrisch zur y-Achse ist, dann muss man den gleichen Term f(x) wieder erhalten.
a) f(-x) = -x = - f(x)
Aufgaben
Man setzt in f(x) wieder -x statt x ein und schaut ob man mit Termumformungen f(x) oder - f(x) erhält.
a) f(-x) = (-x)4 - (-x)2 +1 = x4 - x2 +1 = f(x), also ist Gf achsensymmetrisch zur y-Achse.
b) f(-x) = 24(-x)8 + 8(-x)6 - 1234 = 24x8 + 8x6 - 1234 = f(x), also ist Gf achsensymmetrisch zur y-Achse.
c) f(-x) = 2 + (-x) = 2 - x f(x) oder - f(x), also ist Gf weder achsensymmetrisch zur y-Achse noch punktsymmetrisch zum Ursprung.
d) f(-x) = cos(-x) = cos(x) = f(x), also ist Gf achsensymmetrisch zur y-Achse.
e) e) f(-x) = (-x)2 cos(-x) + 2 = x2 cos(x) + 2 = f(x), also ist Gf achsensymmetrisch zur y-Achse.
f) f(-x) = (-x)2 + 2(-x) = x2 - 2x f(x) oder - f(x), also ist Gf weder achsensymmetrisch zur y-Achse noch punktsymmetrisch zum Ursprung.
g) f(-x) = sin(-x) = - sin(x) = - f(x), also ist Gf punktsymmetrisch zum Ursprung.
h) f(-x) = -x sin(-x) = -x [-sin(x)] = x sin(x) = f(x), also ist Gf achsensymmetrisch zur y-Achse.
i) f(-x) = (-x)2 sin(-x) = x2 [-sin(x)] = - x2 sin(x) = -f(x), also ist Gf punktsymmetrisch zum Ursprung.
k) f(-x) = = - f(x), also ist Gf punktsymmetrisch zum Ursprung.
Ist n gerade, dann ist der Graph der Potenzfunktion f mit f(x) = xn achsensymmetrisch zur y-Achse.
Hat die Polynomfunktion f nur x-Potenzen mit geradzahligen Exponenten, dann ist ihr Graph Gf achsensymmetrisch zur y-Achse.
Hat die Polynomfunktionf nur x-Potenzen mit ungeradzahligen Exponenten, dann ist ihr Graph Gf punktsymmetrisch zum Ursprung.
Beachte: a0 = a0·x0 und 0 ist eine gerade Zahl!