Aufgaben zur Lagebeziehung Gerade - Ebene

Aus RSG-Wiki
Version vom 17. März 2020, 21:50 Uhr von Karlhaberl (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

S. 145/2

Die Normalform der Ebenengleichung lässt sich umformen zu 4x1 - 5x2 - 6x3 - (4-6t)=0.
a) Damit die Gerade g senkrecht zur Ebene E verläuft, ist ihr Richtungsvektor parallel zum Normalenvektor der Ebene. Beim Normalenvektor der Ebene ist x3=-6, ebenso ist beim Richtungsvektor der Geraden x3=-6. Also müssen bei beiden Vektoren x1 und x2 übereinstimmen. Damit ist r = 4 und s = -5.

b) und c) Damit die Gerade (echt) parallel zur Ebene E ist oder in der Ebene E liegt, muss der Richtungsvektor der Gerade g senkrecht zum Normalenvektor der Ebene E sein. Also ist das Skalarprodukt dieser beiden Vektoren 4r - 5s + 36 = 0, d.h. r und s müssen diese Gleichung erfüllen, z.B. (r = -9 und s = 0) oder (r=-14 und s=-4)

Für t = 3 stimmt der Stützpunkt A(1;0;3) der Ebene E mit dem Stützpunkt A(1;0;3) der Geraden g überein. Dann liegt g in der Ebene.

S. 145/3

a) Damit die Gerade g auf der Ebene E senkrecht steht, muss ihr Richtungsvektor \vec{u} kollinear zum Normalenvektor \vec{n} der Ebene E sein, also ist \vec{u} = k \cdot \vec{n}.


b) Damit die Gerade g echt parallel zur Ebene E verläuft muss ihr Richtungsvektor \vec{u} senkrecht zum Normalenvektor \vec{n} der Ebene E sein, also ist das Skalarprodukt \vec{u} \circ \vec{n} = 0 .
Desweiteren ragt der Verbindungsvektor \vec{AB} der beiden Stützpunkte A und B von der Geraden g und der Ebene E aus der Ebene E heraus, die Richtungsvektoren der Ebene und der Verbindungsvektor \vec{AB} sind nicht komplanar.
Da in dieser Aufgabe die Richtungsvektoren der Ebene nicht gegeben sind, sondern es ist der Normalenvektor \vec{n} vorgegeben, ist dies gleichbedeutend damit, dass der Verbindungsvektor \vec{AB} und der Normalenvektor \vec{n} nicht senkrecht zueinander sind, also ist \vec{AB} \circ \vec{n} \neq 0 .


c) Auch hier muss wie in b) der Richtungsvektor \vec{u} der Geraden g senkrecht zum Normalenvektor \vec{n} der Ebene E sein, also ist das Skalarprodukt \vec{u} \circ \vec{n} = 0 .
Damit die Gerade g in der Ebene E liegt, ist nun der Verbindungsvektor \vec{AB} der beiden Stützpunkte A und B von der Geraden g und der Ebene E in der Ebene E, er ist also mit den Richtungsvektoren der Ebene komplanar.
Da aber wiederum der Normalenvektor \vec{n} der Ebene vorgegeben ist, ist nun der Verbindungsvektor \vec{AB} senkrecht zum Normalenvektor \vec{n}, also ist hier nun \vec{AB} \circ \vec{n} = 0 .


d) Damit die Gerade g die Ebene E schneidet, darf der Richtungsvektor \vec{u} der Geraden g nicht senkrecht zum Normalenvektor \vec{n} der Ebene E sein, also muss \vec{u} \circ \vec{n} \neq 0 sein. Dies beinhaltet dann auch a)!

Falls das Skalarprodukt \vec{u} \circ \vec{n} = 0 ist, hat man ja b) und c)!

S. 145/4

k ist Scharparameter der Ebenenschar Ek: x1 + (k-2)x2 + (2k+1)x3 = 5 - 2k .

a) (1) Eine Ebene Ek enthält den Ursprung, wenn in der Normalenform die Konstante gleich Null ist, also 5-2k = 0 ist. Somit ist k = 2,5 und die Ebene E2,5 enthält den Ursprung.
(2) Eine Ebene Ek ist parallel zur x3-Achse, wenn in der Normalenform kein x3 vorkommt, also muss der Koeffizient von x3 gleich 0 sein, d.h. 2k+1 = 0 , also k = -0,5.
(3) Eine Ebene Ek ist die x2x3-Ebene, wenn ihr Normalenvektor der Richtungsvektor der x1-Achse ist. Die x1-Achse hat als Richtungsvektor \vec{v} = \left( \begin{array}{c} 1 \\\ 0 \\\ 0 \end{array}\right). Dies ist dann auch ein Normalenvektor der Ebene Ebene Ek. Damit müssen in der Normalenform der Ebene Ek die Koeffizienten von x2 und x3 gleich 0 sein, also k-2 = 0 und 2k+1 = 0. Dies ist gleichzeitig nicht möglich, denn dann müsste gleichzeitig k = 2 und k = -0,5 sein. Also ist keine der Scharebenen die x2x3-Ebene.

b) Eine Ebene ist Lotebene zur x3-Achse, wenn der Richtungsvektor \vec{v} = \left( \begin{array}{c} 0 \\\ 0 \\\ 1  \end{array}\right) der x3-Achse auch ein Normalenvektor der Ebene ist. Also muss für den Normalenvektor \vec{n} = \left( \begin{array}{c} 1 \\\ k-2 \\\ 2k+1  \end{array}\right) der Ebene Ek die erste und zweite Koordinate gleich 0 sein, was nicht möglich ist, da die erste Koordinate immer 1 ist.

c) Man setzt die Koordinaten der Geraden g: \vec{x} = \left( \begin{array}{c} 1+5m \\\ -2+2m \\\ -m  \end{array}\right) in die Normalenform der Ebenengleichung ein.

Die Gleichung 1+5m + (k-2)(-2+2m) + (2k+1)(-m) = 5-2k vereinfacht man zu 0 = 0. Dies ist eine allgemeingültige Gleichung unabhängig von k, was hier bedeutet, dass die Gerade g in allen Ebenen der Schar liegt.

gemeinsame Gerade einer Ebenenschar

d) Die Gerade h hat die Gleichung h: \vec{x} = \left( \begin{array}{c} 0 \\\ -4 \\\ 1  \end{array}\right)+ k\left( \begin{array}{c} 3 \\\ 6 \\\ -3  \end{array}\right). Die Ebene E1 hat die Gleichung x1 - x2 + 3x3 = 3.
Man setzt die Koordinaten der Geraden in die Normalenform der Ebenengleichung ein und erhält folgende Gleichung:

3k - (-4+6k) + 3(1-3k) = 3. Ihre Lösung ist k = 1/3 und der Schnittpunkt S(1;-2;0).