Abstands- und Winkelbestimmungen
Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.
Die Hessesche Normalenform (HNF)
Aufgaben
S. 153/1
a) Die Ebene E hat als HNF .
Der Ursprung O hat den Abstand von der Ebene E .
Man kann die Rechnung auch ohne Betragstriche machen. Ergibt sich ein negatives Ergebnis wie hier nimmt man hiervon den Betrag.
Der Abstand des Punktes P(6;-1;9) von der Ebene E ist
b) Die Ebene E hat als HNF .
Der Ursprung O hat den Abstand von der Ebene E .
Der Punkt P(7;7;2) hat von E den Abstand .
c) Die Ebene E hat als HNF .
Der Ursprung O hat den Abstand von der Ebene E . Der Ursprung liegt in der Ebene E.
Der Punkt P(-1;1;3) hat von E den Abstand .
d) Die Ebene E hat als HNF .
Der Ursprung O hat den Abstand von der Ebene E .
Der Punkt P(4;-1;2) hat von E den Abstand .
O und P liegen jeweils im Abstand 2 in verschiedenen Halbräumen zur Ebene E.
S. 153/2
(1) Wegen steht der Richtungsvektor der Geraden g senkrecht zum Normalenvektor der Ebene E. ist also komplanar zu den Richtungsvektoren der Ebene E.
Die Ebene E hat als HNF .
Für den Stützpunkt A(7;-13;-4) der Gerade g berechnet man , also liegt A nicht in E und g ist echt parallel zu E. Das g echt parallel zu E ist, hat g auch den Abstand 18 zur Ebene E.
Wird g senkrecht auf E projeziert, dann wird in Richtung des Normalenvektors projeziert. Fällt man von A das Lot auf E, dann erhält man den Lotfusspunkt L durch 2(7+2k)-2(-13-2k)-(-4-k)+10=0 und k = -6 und L(-5;-1;2). Damit hat man für g* den Stützpunkt. Ihr Richtungsvektor ist derselbe wie bei g, da er "in E liegt" (ist komplanar zu den Richtungsvektoren von E). Die senkrechte Projektion von g in die Ebene E ist dann .
(2) Analog geht man hier vor.
.
HNF von E: .
k + (7+k) + (-1+k) + 12 = 0 --> k = -6 und L(-6;1;-7)
S. 154/4
Die Ebene E hat HNF .
Für diese Gleichung hat man also einen Normaleneinheitsvektor .
Zu einer zu E parallelen Ebene im Abstand 9 kommt man, wenn man neun mal diesen Normaleneinheitsvektor oder aneinandersetzt.