Abstands- und Winkelbestimmungen

Aus RSG-Wiki
Version vom 26. März 2020, 07:23 Uhr von Karlhaberl (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Dieses Thema ist im Buch auf S. 151 ausführlich beschrieben. Lesen Sie bitte diese Seite aufmerksam.


Die Hessesche Normalenform (HNF)

Winkelberechnungen

Aufgaben

S. 153/1

a) Die Ebene E hat als HNF  \frac{2x_1+x_2+2x_3}{3}=0.
Der Ursprung O hat den Abstand von der Ebene E d(O,E)=\vert \frac{0+0+0-2}{3} \vert=\vert\frac{-2}{3}\vert=\frac{2}{3}.

Man kann die Rechnung auch ohne Betragstriche machen. Ergibt sich ein negatives Ergebnis wie hier -\frac{2}{3} nimmt man hiervon den Betrag.

Der Abstand des Punktes P(6;-1;9) von der Ebene E ist d(P,E)=\frac{2\cdot6-1+2\cdot9}{3})=\frac{27}{3}=9

b) Die Ebene E hat als HNF  \frac{x_1-x_2+6}{\sqrt{2}}=0.
Der Ursprung O hat den Abstand von der Ebene E d(O,E)= \frac{0-0+6}{\sqrt{2}} = \frac{6}{\sqrt{2}}=3\sqrt{2}.
Der Punkt P(7;7;2) hat von E den Abstand d(P,E)=\frac{7-7+6}{\sqrt{2}})=\frac{6}{\sqrt{2}}=3\sqrt{2}.

c) Die Ebene E hat als HNF  \frac{x_1-2 \cdot x_2-2\cdot x_3}{3}=0.
Der Ursprung O hat den Abstand von der Ebene E d(O,E)= \frac{0-0-0}{3} = 0. Der Ursprung liegt in der Ebene E.
Der Punkt P(-1;1;3) hat von E den Abstand d(P,E)=\vert \frac{-1-2-6}{3} \vert=\vert \frac{-9}{3}\vert =3.

d) Die Ebene E hat als HNF  \frac{3\cdot x_1+4\cdot x_3-10}{5}=0.
Der Ursprung O hat den Abstand von der Ebene E d(O,E)=\vert \frac{0+0-10}{5}\vert = \vert -2\vert = 2.
Der Punkt P(4;-1;2) hat von E den Abstand d(P,E)=\frac{12+8-10}{5}=\frac{10}{5}=2.
O und P liegen jeweils im Abstand 2 in verschiedenen Halbräumen zur Ebene E.

Abstand

S. 153/2

(1) Wegen  \left( \begin{array}{c} 3 \\\ 2 \\\ 2  \end{array}\right) \circ \left( \begin{array}{c} 2 \\\ -2 \\\ 1  \end{array}\right) = 0 steht der Richtungsvektor \vec{u} der Geraden g senkrecht zum Normalenvektor \vec{n} der Ebene E. \vec{u} ist also komplanar zu den Richtungsvektoren der Ebene E.
Die Ebene E hat als HNF  \frac{2\cdot x_1-2 \cdot x_2- x_3 +10}{3}=0. Für den Stützpunkt A(7;-13;-4) der Gerade g berechnet man d(A,E)=\frac{14+26+4+10}{3}=\frac{54}{3}=18, also liegt A nicht in E und g ist echt parallel zu E. Das g echt parallel zu E ist, hat g auch den Abstand 18 zur Ebene E.
Wird g senkrecht auf E projeziert, dann wird in Richtung des Normalenvektors projeziert. Fällt man von A das Lot l: \vec{x} =
\left( \begin{array}{c} 7 \\\ -13 \\\ -4  \end{array}\right) + k \left( \begin{array}{c} 2 \\\ -2 \\\ -1  \end{array}\right) auf E, dann erhält man den Lotfusspunkt L durch 2(7+2k)-2(-13-2k)-(-4-k)+10=0 und k = -6 und L(-5;-1;2). Damit hat man für g* den Stützpunkt. Ihr Richtungsvektor ist derselbe wie bei g, da er "in E liegt" (ist komplanar zu den Richtungsvektoren von E). Die senkrechte Projektion von g in die Ebene E ist dann g^* \vec{x}=\left( \begin{array}{c} -5 \\\ -1 \\\ 2  \end{array}\right) + r \left( \begin{array}{c} 3 \\\ 2 \\\ 3  \end{array}\right) .

(2) Analog geht man hier vor.
 \left( \begin{array}{c} -5 \\\ 6 \\\ -1  \end{array}\right) \circ \left( \begin{array}{c} 1 \\\ 1 \\\ 1  \end{array}\right) = 0 .
HNF von E:  \frac{x_1+ x_2 + x_3 + 12}{\sqrt{3}}=0.
d(A,E)=\frac{0+7-1+12}{\sqrt{3}}=\frac{18}{3}=18
l: \vec{x} =\left( \begin{array}{c} 0 \\\ 7 \\\ -1  \end{array}\right) + k \left( \begin{array}{c} 1 \\\ 1 \\\ 1  \end{array}\right)
k + (7+k) + (-1+k) + 12 = 0 --> k = -6 und L(-6;1;-7)

g^*: \vec{x}=\left( \begin{array}{c} -6 \\\ 1 \\\ -7  \end{array}\right) + r \left( \begin{array}{c} -5 \\\ 6 \\\ -1  \end{array}\right)

S. 154/4

Die Ebene E hat HNF  \frac{16x_1+ 8x_2 + 2x_3}{18}=0 . Für diese Gleichung hat man also einen Normaleneinheitsvektor \vec{n^o}= \frac{1}{18} \left( \begin{array}{c} 16 \\\ 8 \\\ 2  \end{array}\right) = \frac{1}{9} \left( \begin{array}{c} 8 \\\ 4 \\\ 1  \end{array}\right) .
Zu einer zu E parallelen Ebene im Abstand 9 kommt man, wenn man neun mal diesen Normaleneinheitsvektor \vec{n^o} oder -\vec{n^o} aneinandersetzt.
Deren HNF sind dann  \frac{16x_1+ 8x_2 + 2x_3}{18}+9=0 oder  \frac{16x_1+ 8x_2 + 2x_3}{18}-9=0 . (Berechnet man den Abstand des Ursprungs O (liegt in E) von diesen Ebenen kommt jeweils 9 heraus!)
Schreibt man die Ebenengleichungen nur als Normalenform analog der Ebenengleichung für E, dann lauten sie 16x_1+ 8x_2 + 2x_3 + 162 = 0 und 16x_1+ 8x_2 + 2x_3 - 162 = 0 .
parallele Ebenen

(E1 für +9 und E2 für -9; E1 und E2 liegen in verschiedenen Halbräumen des durch E geteilten Raumes.)
Nuvola apps kig.png   Merke

Bei gleichen Objekten (Gerade - Gerade) bzw. (Ebene - Ebene) wird cos zur Winkelberechnung verwendet.

Bei ungleichen Objekten (Gerade - Ebene) wird sin zur Winkelberechnung verwendet.

S. 154/6

a) Gleichsetzen der zwei Geradengleichungen liefert den Schnittpunkt (S(1;-1;0).
Für den Schnittwinkel interessieren nur die Richtungsvektoren der Geraden. Man erhält ihn aus  cos\varphi=\vert \frac{\left( \begin{array}{c} 0 \\\ 2 \\\ 1  \end{array}\right) \circ \left( \begin{array}{c} 1 \\\ 0 \\\ 3  \end{array}\right)}{\sqrt{5}\cdot \sqrt{10}} \vert = \frac{3}{\sqrt{50}}. Es ist \varphi = 64,0^o.

Ich lasse die Betragsstriche meist weg. Ist das Ergebnis für cos oder sin negativ, dann nimmt man einfach hier den Betrag
und erhält dann den spitzen Winkel.

b) S(0;2;-1) und \varphi = 32,3^o

c) S(2;2;2) und \varphi = 50,8^o

S. 154/7

a) Setzt man g in E ein, erhält man diese Gleichung 3(1+k) - (-2) - (-k) = 1 und k = -1. S(0;-2;1)
Für den Schnittwinkel interessieren der Richtungsvektor von g und der Normalenvektor der Ebene E.  sin\varphi=\vert \frac{\left( \begin{array}{c} 1 \\\ 0 \\\ -1  \end{array}\right) \circ \left( \begin{array}{c} 3 \\\ -1 \\\ -1  \end{array}\right)}{\sqrt{2}\cdot \sqrt{11}} \vert = \frac{4}{\sqrt{22}} und \varphi = 58,5^o

b) S(4;-1;-1) und \varphi=71,5^o

S. 154/8

a) Für den Schnittwinkel interessieren die zwei Normalenvektoren der Ebene.  cos\varphi=\vert \frac{\left( \begin{array}{c} 5 \\\ 2 \\\ -6  \end{array}\right) \circ \left( \begin{array}{c} 1 \\\ 5 \\\ 3  \end{array}\right)}{\sqrt{65}\cdot \sqrt{35}} \vert = \vert \frac{-3}{\sqrt{2275}}\vert = \frac{3}{\sqrt{2275}} und \varphi = 86,4^o

b) \varphi = 90^o

c) \varphi = 90^o

d) Hier ist es sinnvoll beide Ebenengleichungen in Normalenform zu schreiben;
E1: 5x1 - 6x2 - 2x3 + 3 = 0 und E2: 2x1 + x3 -3 = 0

\varphi = 63,7^o




S. 154/9

a) Man hat die Gleichung \left( \begin{array}{c} -3 \\\ -3 \\\ 1  \end{array}\right) + k \left( \begin{array}{c} 1 \\\ 7 \\\ 3  \end{array}\right) = \left( \begin{array}{c} -1 \\\ a_2 \\\ a_3  \end{array}\right)
Aus der 1. Koordinatengleichung -3 + k = -1 folgt k = 2.
Für die 2. Koordinatengleichung ergibt sich -3 + 14 = a2, also a2=11.
Für die 3. Koordinatengleichung ergibt sich 1 + 6 = 3, also a3=7.
Also ist A(-1;11;7)

b) X ist ein Punkt auf g und hat dem Ortsvektor  \vec{x}=\left( \begin{array}{c} -3+k \\\ -3+7k \\\ 1 + 3k  \end{array}\right). Soll X Lotfusspunkt F des Lotes von P auf g sein, dann steht der Vektor \vec{PX} = \left( \begin{array}{c} -5+k \\\ -6+7k \\\ -4+3k  \end{array}\right) senkrecht auf dem Richtungsvektor \left( \begin{array}{c} 1 \\\ 7 \\\ 3  \end{array}\right) der Geraden. Also muss \left( \begin{array}{c} -5+k \\\ -6+7k \\\ -4+3k  \end{array}\right) \circ 
\left( \begin{array}{c} 1 \\\ 7 \\\ 3  \end{array}\right) = 0 sein. Dies führt zur Gleichung
-5 + k + 7(-6 + 7k) + 3(-4+3k) = 0 und -59 + 59k = 0, also k = 1 und F(-2;4;4).

c) Den Spiegelpunkt A* von A bei Punktspiegelung am Zentrum Z = F(-2;4;4) erhält man durch  \vec{a^*}=\vec{a} + 2\cdot \vec{AF} = \vec{a} + 2(\vec{f}-\vec{a}) =2 \vec{f} - \vec{a} = \left( \begin{array}{c} -4 \\\ 8 \\\ 8  \end{array}\right) -\left( \begin{array}{c} -1 \\\ 11 \\\ 7  \end{array}\right) = \left( \begin{array}{c} -3 \\\ -3 \\\ 1  \end{array}\right) , also A*(-3;-3;1) .
Analog erhält man P*(-6;5;3)
Parallelogramm
Den Flächeninhalt dieses Parallelogramms kann man nun berechnen.
elementar: Den Flächeninhalt eines Parallelogramms berechnet man mit der Formel A = g·h . Also muss man sich überlegen was ist g und was ist h. Die Punkte A, Z und A* liegen auf der Geraden g.
Man sieht, dass die beiden Dreiecke AA*P und AA*P* das Parallelogramm ergeben. Z = F ist der Lotfusspunkt des Lotes von P auf g, also ist die h^'=\vert \vec{PZ} \vert die Höhe des Dreiecks AA*P und g^'=\vert \vec{AA^*} \vert die Grundlinie des Dreiecks . Damit ergbit A = 2\cdot A_{AA^*P} = 2 \cdot \frac{1}{2} \cdot \vert \vec{AA^*} \vert \cdot \vert \vec{PZ} \vert = 2 \frac{1}{2} \cdot \vert \left( \begin{array}{c} -4 \\\ 1 \\\ -1  \end{array}\right) \vert \cdot \vert \left( \begin{array}{c} -2 \\\ -14 \\\ -6  \end{array}\right) \vert = \sqrt{18}\cdot\sqrt{236} = 6\sqrt{118} \approx 65,2

mit dem Vektorprodukt: In der Merkhilfe findet man die Formel für den Flächeninhalt eines Dreiecks. Für unser Parallelogramm multipliziert man diese Formel mit 2. Also hat man  F = \vert \vec{AA^*} x \vec{AP} \vert =  \vert \left( \begin{array}{c} -2 \\\ -14 \\\ -6  \end{array}\right)  x   \left( \begin{array}{c} -1 \\\ 1 \\\ -1  \end{array}\right) \vert  = \vert \left( \begin{array}{c} 20 \\\ 22 \\\ -58  \end{array}\right) \vert  = \sqrt{4248} = 6\sqrt{118} \approx 65,2

S. 155/10

a) Es ist \vec{DD^*}=\left( \begin{array}{c} -8 \\\ 6 \\\ -2  \end{array}\right) = -2\cdot\left( \begin{array}{c} 4 \\\ -3 \\\ 1  \end{array}\right) = \vec{n} (\vec{n} ist der Normalenvektor der Ebene E), also steht der Vektor \vec{DD^*} senkrecht zur Ebene E.
Der Mittelpunkt M der Strecke [DD*] erhält man durch seinen Ortsvektor  \vec{m} = \frac{1}{2} \cdot (\vec{d^*} - \vec{d} )= \frac{1}{2} \cdot (\left( \begin{array}{c} 0 \\\ 8 \\\ 4 \end{array}\right) + \left( \begin{array}{c} 8 \\\ 2 \\\ 6  \end{array}\right)) = \frac{1}{2} \cdot \left( \begin{array}{c} 8 \\\ 10 \\\ 10  \end{array}\right) = \left( \begin{array}{c} 4 \\\ 5 \\\ 5  \end{array}\right), also M(4;5;5) und M liegt wegen 4·4 - 3·4 + 5 -6 = 0 in der Ebene E, also sind die beiden Punkte D und D* symmetrisch zur Ebene E.

Man kann auch den Abstand der beiden Punkte von der Ebene E berechnen. Die HNF der Ebene E ist  \frac{4x_1 - 3x_2 + x_3 -6}{\sqrt{26}}=0
d(D,E)= \frac{4\cdot 8 - 3\cdot 2 + 6 -6}{\sqrt{26}} = \sqrt{26} und d(D^*,E)=\vert \frac{4\cdot 0 - 3\cdot 8 + 4 -6}{\sqrt{26}} \vert = \vert -\sqrt{26} \vert = \sqrt{26} . Damit liegen D und D* auch symmetrisch zur Ebene E.

b) Das Vorgehen für die Spiegelung eines Punktes S an einer Ebene ist:

  • Fälle von S das Lot auf die Ebene. Dabei ist das Lot l eine Gerade durch S in Richtung des Normalenvektors der Ebene E.
  • Bestimme den Lotfußpunkt F als Schnittpunkt der Lotgeraden l mit der Ebene E.
  • Den Spiegelpunkt erhält man, indem man den Verbindungsvektor der Punkte S und F über F hinaus nochmals anträgt.

c) Das Vorgehen ist in b) erklärt. Das Lot von P auf E schneidet die Ebene in F(3;1;2) und der Spiegelpunkt ist P*(-4;3;1).

155-10c

S. 155/12

Das haben wir schon im Unterricht gemacht. Formulieren Sie es aber bitte auch selbst nochmal.

S. 155/13

a) Der Mittelpunkt der Kugel ist der Ursprung M(0;0;0). Der Normalenvektor <marh>\vec{n}</math> der Ebene E ist  \vec{n} = \left( \begin{array}{c} 2 \\\ -2 \\\ 1 \end{array}\right) und hat den Betrag 3.
Mit der HNF der Ebene E kann man den Abstand von M zur Ebene E berechnen. Es ist d(m,E)=\frac{9}{3}=3. Damit die Kugel die Ebene berührt muss ihr Radius 3 sein.
Den Berührpunkt erhält man, indem man von M aus ein Lot l auf E errichtet. Dieses Lot hat als Stützpunkt M und als Richtungsvektor den Normalenvektor der Ebene, also l: \vec{x}= k \cdot \left( \begin{array}{c} 2 \\\ -2 \\\ 1 \end{array}\right). Setzt man die Koordinaten von l in die Ebenengleichung, erhält man 2·2k - 2(-2k) + k - 9 = 0 und k = 1. Der Berührpunkt B hat die Koordinaten B(2;-2;1).

Analog geht man bei den Aufgaben b) und c) vor.
b) r = \frac{10}{3} und B(-\frac{10}{9};-\frac{28}{9};\frac{4}{9}).

c) r = 3 und B(6;-1;1).

S. 155/15

a) Wie wir es schon öfter gemacht haben, macht man auch hier von Q ein Lot auf g. Der Lotfußpunkt F auf g hat einen Ortsvektor \vec{f}= \left( \begin{array}{c} 3-2k \\\ -2+2k \\\ 3+k \end{array}\right) und der Vektor \vec{QF} steht senkrecht auf dem Richtungsvektor \left( \begin{array}{c} 2 \\\ 2 \\\ 1 \end{array}\right) der Geraden g. Es ist also  \left( \begin{array}{c} -2+2k \\\ -8+2k \\\ 2+k \end{array}\right) \circ \left( \begin{array}{c} 2 \\\ 2 \\\ 1 \end{array}\right) = 0 . Dies führt zur Gleichung 2(-2+2k) + 2(-8+2k) + 2+k =0 und k = 2 und F(7;2;5). Der Abstand der beiden Geraden ist dann \vert \vec{QF} \vert = \vert \left( \begin{array}{c} 2 \\\ -4 \\\ 4 \end{array}\right) \vert = 6 .

b) g und h spannen eine Ebene auf. g kann man gleich nehmen und man braucht noch einen zweiten Richtungsvektor, dafür eignet sich der Verbindungsvektor  \left( \begin{array}{c} 2 \\\ 8 \\\ -2 \end{array}\right) der beiden Stützpunkte, so dass sich diese Parameterdarstellung \vec{x}=\left( \begin{array}{c} 3 \\\ -2 \\\ 3 \end{array}\right) + r\cdot \left( \begin{array}{c} 2 \\\ 2 \\\ 1 \end{array}\right) + s\cdot\left( \begin{array}{c} 1 \\\ 4 \\\ -1 \end{array}\right) der Ebene E ergibt. Für die Normalenform der Ebenengleichung rechnet man zuerst \left( \begin{array}{c} 2 \\\ 2 \\\ 1 \end{array}\right) x \left( \begin{array}{c} 1 \\\ 4 \\\ -1 \end{array}\right) = \left( \begin{array}{c} -6 \\\ 3 \\\ 6 \end{array}\right). Also ist  \vec{n}=\left( \begin{array}{c} -2 \\\ 1 \\\ 2 \end{array}\right) ein Normalenvektor und -2x1 + x2 + 2x3 + 2 = 0 .

Den Schnittwinkel der Geraden k mit der Ebene E erhält man  sin\varphi=\vert \frac{\left( \begin{array}{c} -2 \\\ 1 \\\ 2  \end{array}\right) \circ \left( \begin{array}{c} -3 \\\ 1 \\\ 0  \end{array}\right)}{3 \cdot \sqrt{10}} \vert = \frac{7}{3\sqrt{10}} und \varphi = 47,5^o .

c) Gegeben ist eine gerade Pyramide. Dies bedeutet, dass die Spitze genau über dem Mittelpunkt des Grundquadrats ist.
Das Lot von S auf die Ebene E muss dann die Ebene auf der Mittelparallele m zu g und h schneiden. Der Mittelpunkt der Strecke [PQ] liegt auf dieser Mittelparallele. Es ist M(4;2;2) und m: \vec{x} = \left( \begin{array}{c} 4 \\\ 2 \\\ 2  \end{array}\right) + t \left( \begin{array}{c} 2 \\\ 2 \\\ 1  \end{array}\right).
Macht man von einem passenden Punkt X auf m ein Lot zur Ebene, dann muss dieses Lot die Gerade k in S schneiden. Das Lot hat die Gleichung  \vec{x} = \left( \begin{array}{c} 4+2t \\\ 2+2t \\\ 2+t  \end{array}\right) + n\cdot \left( \begin{array}{c} -2 \\\ 1 \\\ 2  \end{array}\right) = \left( \begin{array}{c} 4+2t -2n \\\ 2+2t+n \\\ 2+t+2n  \end{array}\right).
Setzt man das Lot gleich k, dann hat man ein Gleichungssystem von drei Gleichungen mit 3 Unbekannten.
\left( \begin{array}{c} 4+2t -2n \\\ 2+2t+n \\\ 2+t+2n  \end{array}\right) = \left( \begin{array}{c} 2-3m \\\ 1+m \\\ 7 \end{array}\right)
Wenn man dies löst, erhält man Lösungen m = 2, n = 3, t = -1.
m = 2 liefert S(-4;3;7), n = 3 würde die Höhe der Pyramide liefern (interessiert hier aber nicht!), t = -1 liefert den Lotfußpunkt L(2;0;1). (Die Gerade SL steht senkrecht zur Ebene E!)
L ist Mittelpunkt des Grundquadrats (es handelt sich um eine gerade Pyramide.). Nun macht man ein Lot auf g und h. In a) hat man sich schon überlegt, dass der Vektor  \vec{QF}  =  \left( \begin{array}{c} 2 \\\ -4 \\\ 4 \end{array}\right) ist. Also muss man von L den halben Vektor jeweils zur einen und zur anderen Seite gehen um auf g und h zu kommen.
 \left( \begin{array}{c} 2 \\\ 0 \\\ 1 \end{array}\right) + \left( \begin{array}{c} 1 \\\ -2 \\\ 2 \end{array}\right) = \left( \begin{array}{c} 3 \\\ -2 \\\ 3 \end{array}\right) F1(3;-2;3) auf g und  \left( \begin{array}{c} 2 \\\ 0 \\\ 1 \end{array}\right) - \left( \begin{array}{c} 1 \\\ -2 \\\ 2 \end{array}\right) = \left( \begin{array}{c} 1 \\\ 2 \\\ -1 \end{array}\right) F2(1;2;-1) auf h.
Da die Geraden g und h den Abstand 6 haben, muss man nun von den Punkten F1 und F2 noch 3 Einheiten auf g und h jeweils in verschiedene Richtungen der Geraden gehen und man hat die Eckpunkte der Pyramide. Da der Richtungsvektor von g und h Betrag 3 hat, nimmt man hier statt einem Einheitsvektor gleich den Richtungsvektor.
Die Eckpunkte der Pyramide werden mit P1, P2, P3 und P4 bezeichnet. Es ist dann:
\vec{p1}=\left( \begin{array}{c} 3 \\\ -2 \\\ 3 \end{array}\right)-\left( \begin{array}{c} 2 \\\ 2 \\\ 1 \end{array}\right)=\left( \begin{array}{c} 1 \\\ -4 \\\ 2 \end{array}\right), also P1(1;-4;2)
\vec{p2}=\left( \begin{array}{c} 3 \\\ -2 \\\ 3 \end{array}\right)+\left( \begin{array}{c} 2 \\\ 2 \\\ 1 \end{array}\right)=\left( \begin{array}{c} 5 \\\ 0 \\\ 4 \end{array}\right), also P2(5;0;5)
\vec{p3}=\left( \begin{array}{c} 1 \\\ 2 \\\ -1 \end{array}\right)+\left( \begin{array}{c} 2 \\\ 2 \\\ 1 \end{array}\right)=\left( \begin{array}{c} 3 \\\ 4 \\\ 0 \end{array}\right), also P3(3;4;0)
\vec{p4}=\left( \begin{array}{c} 1 \\\ 2 \\\ -1 \end{array}\right)-\left( \begin{array}{c} 2 \\\ 2 \\\ 1 \end{array}\right)=\left( \begin{array}{c} -1 \\\ 0 \\\ -2 \end{array}\right), also P4(-1;0;-2)

155-15

S. 156/16

Die Ebene E hat Normalenvektor  \vec{n} = \left( \begin{array}{c} 2 \\\ 6 \\\ 3 \end{array}\right). Der Normaleneinheitsvektor ist  \vec{n^o} = \frac{1}{7} \cdot \left( \begin{array}{c} 2 \\\ 6 \\\ 3 \end{array}\right). Der Radius der Kugel ist 7. Geht man nun von S aus 7 mal in Richtung  \vec{n^o} oder  -\vec{n^o}, dann erhält man die zwei Mittelpunkte M und M*.
Also \vec{m}= \left( \begin{array}{c} 0 \\\ 0 \\\ 20 \end{array}\right) + 7 \cdot \frac{1}{7} \cdot \left( \begin{array}{c} 2 \\\ 6 \\\ 3 \end{array}\right)=\left( \begin{array}{c} 2 \\\ 6 \\\ 23 \end{array}\right) und M(2;6;23)
Also \vec{m}= \left( \begin{array}{c} 0 \\\ 0 \\\ 20 \end{array}\right) - 7 \cdot \frac{1}{7} \cdot \left( \begin{array}{c} 2 \\\ 6 \\\ 3 \end{array}\right)=\left( \begin{array}{c} -2 \\\ -6 \\\ 17 \end{array}\right) und M(-2;-6;17).

b) Die Gerade m hat als Stützpunkt M und ihr Richtungsvektor ist der Vektor \vec{SL}=\left( \begin{array}{c} 3 \\\ 9 \\\ -20 \end{array}\right). Damit ist m: \vec{x}=\left( \begin{array}{c} 2 \\\ 6 \\\ 23 \end{array}\right) + k \left( \begin{array}{c} 3 \\\ 9 \\\ -20 \end{array}\right).

c) Die Ebene E* ist parallel zur x1x2-Ebene im Abstand 7 (Radius der Kugel), also x3 - 7 = 0 .
Setzt man die x3-Koordinate von m in die Ebenengleichung ein erhält man 23 - 20k - 7 = 0 und k=\frac{4}{5} . Die Koordinaten von T erhält man, wenn man diesen Wert von k in die Geradengleichung von m einsetzt, also T(4,4;13,2;7) .

d) In a) sind wir von S aus 7 mal in Richtung  \vec{n^o} zu M gegangen. Nun erhält man den Berührpunkt, wenn man von T aus 7 mal in Richtung  -\vec{n^o} geht. Dann ist \vec{b} = \left( \begin{array}{c} 4,4 \\\ 13,2 \\\ 7 \end{array}\right) - \left( \begin{array}{c} 2 \\\ 6 \\\ 3 \end{array}\right) = \left( \begin{array}{c} 2,4 \\\ 7,2 \\\ 4 \end{array}\right) und B(2,4;7,2;4).