Im Gegensatz zum Federpendel (meist hat man ja keine Feder zuhause) kannst du ein Fadenpendel leicht daheim selbst anfertigen.
Ein Fadenpendel besteht aus einem Körper, der an einem befestigten Faden aufgehängt ist. Der Pendelkörper wird um ein kleines Stück aus der Ruhelage ausgelenkt und dort losgelassen.
Beim mathematischen Pendel handelt es sich um ein idealisiertes Pendel, ein "punktförmiger" Pendelkörper hängt an einem masselosen Seil oder Stange.

Aufgabe
1. Beschreibe die Energien, die beim Fadenpendel auftreten.
2. Ein 1m langes Fadenpendel (Masse des Pendelkörpers m = 100g) wird um 20° ausgelenkt. Auf welche Höhe h über der Ruhelage ist das Pendel? Wie groß ist seine Lageenergie gegenüber der Ruhelage?
c)Das Pendel wird losgelassen. Mit welcher Geschwindigkeit bewegt es sich durch die Ruhelage?
[Lösung anzeigen][Lösung ausblenden]
Ist das Pendel ausgelenkt, so hat es Lageenergie. Lässt man es los, dann wird die Lageenergie in Bewegungsenergie umgewandelt. Passiert der Pendelkörper die Ruhelage, dann hat man keine Lageenergie und die Bewegungsenergie ist maximal. Bei der weiteren Bewegung wird nun die Bewegungsenergie wieder in Lageenergie umgewandelt. Im Umkehrpunkt hat der Körper wieder maximale Lageenergie und keine Bewegungsenergie.
b) h = 1m - 1m·cos(10°) = 0,06m = 6cm. EL = mgh = 0,1kg·9,8N/kg·0,06m=0,0588J
Falls du nicht weißt wie du auf h kommst, in diesem Film wird es erklärt.
c) Nach dem Energieerhaltungssatz ist E
B = E
L = 0,0588J, also

und

.

Aufgabe
Welche Kräfte wirken auf einen ausgelenkten Pendelkörper?
[Lösung anzeigen][Lösung ausblenden]
Auf einen ausgelenkten Pendelkörper wirken die Gewichtskraft, die Haltekraft des Seils und die Tangentialkraft. Die Tangentialkraft ist die rücktreibende Kraft, die das Pendel wieder in die Ruhelage bringen will.

Um die Bewegung zu analysieren, legen wir ein Koordinatensystem in die Ruheposition.

Die Kraft FH ist Kathete im Kräftedreieck und es ist
.
Für kleine Winkel
gilt
.

Aufgabe
In diesem Diagramm sind die Graphen der Sinusfunktion f :x → sin(x) und der Idendität g: x → x dargestellt.

Was stellst du in der Nähe des Ursprungs fest? Was kannst du über die zwei Graphen bzw. deren Funktionen dort aussagen?
[Lösung anzeigen][Lösung ausblenden]
In der Nähe des Ursprungs verlaufen die zwei Graphen übereinanderliegend. Die beiden Graphen fallen dort zusammen. Die Funktionswerte von sin(x) und x sind gleich.

Aufgabe
Um die letzte Aussage näher zu untersuchen ist in der Nähe des Ursprung das Diagramm vergrößert.

a) Lies aus dem Diagramm ab für welche x gilt: sin(x) = x (Die beiden Graphen liegen aufeinander.)
b) x ist eine Zahl, als Argument des Sinus ein Argument im Bogenmaß. Rechne x = 0,2 ins Gradmaß um.
c) Formuliere deine Ergebnisse.
[Lösung anzeigen][Lösung ausblenden]
a) Es ist sin(x) = x für -0,2 ≤ x ≤ x.
b) x = 0,2 wird mittels
, also
.
c) Für -0,2 < x < 0,2 ist sin(x) ≈ x . Für die Auslenkung eines Fadenpendels bedeutet dies, dass für Winkel

gilt

Wird das Pendel nach rechts (x>0) ausgelenkt, dann wirkt die Kraft FH nach links, wird der Körper nach links ausgelenkt (x<0), wirkt die Kraft FH nach rechts. In beiden Fällen ist die Kraft entgegengesetzt zu x gerichtet, sie wirkt also entgegen der Orientierung des Koordinatensystems.
https://www.youtube.com/watch?v=f_WUOH3tF78