M11 Ableitung der Logarithmusfunktionen

Aus RSG-Wiki
Version vom 19. März 2021, 15:28 Uhr von Karlhaberl (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Nuvola apps kig.png   Merke

Die natürliche Logarithmusfunktion (ln-Funktion) ist die Umkehrfunktion der e-Funktion.

Die ln-Funktion f:x \to ln(x) hat folgende Eigenschaften:

  • D = R+, W = R
Ln-funktion.jpg
  • Der Graph geht durch den Punkt (1;0)
  • Der Graph der ln-Funktion ist streng monoton steigend.
  • Die negative y-Achse ist Asymptote.

Die Ableitung der ln-Funktion erhält man aus der Tatsache, dass die ln-Funktion Umkehrfunktion zur e-Funktion ist. Für f:x\to e^x ist f^{-1}:x \to ln(x) die Umkehrfunktion. Damit ist f \circ f^{-1}(x)=x. Für die Ableitung gilt hier (f \circ f^{-1'} = 1 und mittels der Kettenregel erhält man
f'(f^{-1}(x))\cdot f^{-1'}(x) = 1. Dies führt wieder zur Formel für die Ableitung der Umkehrfunktion f^{-1'}(x)= \frac{1}{f'(f^{-1}(x))}.
Die Ableitung der e-Funktion ist f '(x) = e^x.
Damit erhält man für die Umkehrfunktion f^{-1}:x \to ln(x) als Ableitung:
f'(x) = \frac{1}{f'(ln(x))}=\frac{1}{e^{ln(x)}}=\frac{1}{x}.
Also ist die Ableitung der natürlichen Logarithmusfunktion ( ln(x))' = \frac{1}{x}.

Im folgenden Applet kann man diese Aussage über die Ableitung der natürlichen Logarithmusfunktion \frac{1}{x} verifizieren. Über dem x-Wert des Punktes auf dem Graphen der ln-Funktion wird die Steigung der Tangente in dem Punkt an den Graphen angetragen. Dieser Punkt liegt auf der Hypberbel \frac{1}{x}.