M11 Ableitung der Logarithmusfunktionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche


Bleistift 35fach.jpg   Aufgabe Wiederholung des Logarithmus

Zur Wiederholung des Logarithmus: M10_Der_Logarithmus

Maehnrot.jpg
Merke:

Die natürliche Logarithmusfunktion (ln-Funktion) ist die Umkehrfunktion der e-Funktion.

Die ln-Funktion f:x \to ln(x) hat folgende Eigenschaften:

  • D = R+, W = R
Ln-funktion.jpg
  • Der Graph hat genau eine Nullstelle (1;0), es ist ln(1) = 0.
  • ln(e) = 1
  • Der Graph der ln-Funktion ist streng monoton steigend.
  • Die negative y-Achse ist Asymptote.
  • Für x \to \infty ist ln(x) \to \infty.


Die Ableitung der ln-Funktion erhält man aus der Tatsache, dass die ln-Funktion Umkehrfunktion zur e-Funktion ist. Für f:x\to e^x ist f^{-1}:x \to ln(x) die Umkehrfunktion. Damit ist f \circ f^{-1}(x)=x. Für die Ableitung gilt hier (f \circ f^{-1'} = 1 und mittels der Kettenregel erhält man
f'(f^{-1}(x))\cdot f^{-1'}(x) = 1. Dies führt wieder zur Formel für die Ableitung der Umkehrfunktion f^{-1'}(x)= \frac{1}{f'(f^{-1}(x))}.
Die Ableitung der e-Funktion ist f '(x) = e^x.
Damit erhält man für die Umkehrfunktion f^{-1}:x \to ln(x) als Ableitung:
f'(x) = \frac{1}{f'(ln(x))}=\frac{1}{e^{ln(x)}}=\frac{1}{x}.
Also ist die Ableitung der natürlichen Logarithmusfunktion ( ln(x))' = \frac{1}{x}.

Im folgenden Applet kann man diese Aussage über die Ableitung der natürlichen Logarithmusfunktion \frac{1}{x} verifizieren. Über dem x-Wert des Punktes auf dem Graphen der ln-Funktion wird die Steigung der Tangente in dem Punkt an den Graphen angetragen. Dieser Punkt liegt auf der Hypberbel \frac{1}{x}.

Maehnrot.jpg
Merke:

Die Ableitung von ln(x) ist (ln(x))' = \frac{1}{x}


Bleistift 35fach.jpg   Aufgabe Wiederholung der Rechengesetze Logarithmus

Produkt: \log_b (x \cdot y) = \log_b x + \log_b y
Quotient: \log_b \frac xy = \log_b x - \log_b y
Potenz: \log_b \left(x^r\right) = r \log_b x.

Wurzel: \log_b \sqrt[n]{x} = \log_b \left(x^{\frac 1n}\right) = \frac 1n\log_b x.

Basisumrechnung: \log_b x = \frac{\log_a x}{\log_a b}

Und hier: viele Beispiele und Aufgaben und Aufgaben mit Lösungen.


Bleistift 35fach.jpg   Aufgabe 1

Leiten Sie ab
a) f(x) = ln(4x)
b) f(x) = ln(\sqrt{x^2 + 5})
c) f(x) = ln(cos(x)) für cos(x) > 0
d) f(x) = ln((sin x)^2 + (cos x)^2)

Mit der Kettenregel erhält man
a) Mit z = 4x ist f'(x) = f'(z)\cdot z' = \frac{1}{z}\cdot 4=\frac{4}{4x}=\frac{1}{x}
Oder mit den Rechengesetzen des Logarithmus ist f(x) = ln(4) + ln(x) und die Ableitung ist f'(x)=0 + \frac{1}{x} =\frac{1}{x}
b) Es ist ln(\sqrt{x^2 + 5})=ln((x^2+5)^{\frac{1}{2}})=\frac{1}{2}\cdot ln(x^2+5)
Damit ist mit z = x2+5 die Ableitung f'(x) = \frac{1}{2}\cdot f'(z)\cdot z'=\frac{1}{2}\cdot \frac{1}{x^2+5}\cdot 2x=\frac{x}{x^2+5}
Oder mit z=\sqrt{x^2+5} ist f'(x) = f'(z)\cdot z' = \frac{1}{z}\cdot \frac{2x}{2\sqrt{x^2+5}}=\frac{1}{\sqrt{x^2+5}}\cdot \frac{x}{\sqrt{x^2+5}} =\frac{x}{x^2+5}.
c) mit z = cos(x) ist f'(x) = \frac{1}{cos(x)}\cdot (-sin(x) = - \frac{sin(x)}{cos(x)}=-tan(x)

d) Es ist (sin x)2 + (cos x)2 = 1, also ist f(x) = ln(1) = 0 und f'(x) = 0.