Umkehrfunktion Beispiele: Unterschied zwischen den Versionen
Zeile 6: | Zeile 6: | ||
Um das bisher behandelte zu üben beginnen wir mit ähnlichen Beispielen, also linearen Funktionen | Um das bisher behandelte zu üben beginnen wir mit ähnlichen Beispielen, also linearen Funktionen | ||
− | {{ | + | {{Aufgaben-blau|1|2=Bestimme die Umkehrfunktion graphisch und rechnerisch der Funktion |
− | Bestimme die Umkehrfunktion graphisch und rechnerisch der Funktion | + | |
a) <math>f: x \rightarrow 2x + 1</math> | a) <math>f: x \rightarrow 2x + 1</math> | ||
Zeile 30: | Zeile 29: | ||
Nun wollen wir auch andere Funktionstypen untersuchen: | Nun wollen wir auch andere Funktionstypen untersuchen: | ||
− | {{ | + | {{Aufgaben-blau|2|2=Bestimme die Umkehrfunktion graphisch und algebraisch der Funktion |
a) <math>f: x \rightarrow \frac{1}{x}+1</math> | a) <math>f: x \rightarrow \frac{1}{x}+1</math> |
Aktuelle Version vom 23. April 2021, 09:52 Uhr
Startseite - Wertetabelle - Graph - Term - Beispiele - Definitions- und Wertemenge - Monotoniekriterium
Um das bisher behandelte zu üben beginnen wir mit ähnlichen Beispielen, also linearen Funktionen
Rechnerisch:
x und y vertauschen:
nach y auflösen:
Rechnerisch:
x und y vertauschen:
nach y auflösen:
Nun wollen wir auch andere Funktionstypen untersuchen:
Rechnerisch:
x und y vertauschen:
nach y auflösen:
Rechnerisch:
x und y vertauschen:
nach y auflösen:
Rechnerisch:
x und y vertauschen:
nach y auflösen:
Bei den letzten Aufgabe hat man ein Problem. Bei der graphischen Lösung geht man von einem Punkt der -Achse waagrecht zum Funktionsgraph der Funktion und von dort senkrecht zur -Achse. Nur wie soll man von waagrecht losgehen? Nach links oder nach rechts?
Dies wollen wir bei Definitions- und Wertemenge näher behandeln.
Zurück zur Startseite - Wertetabelle - Graph - Term - Beispiele - Definitions- und Wertemenge - Monotoniekriterium