2018-19-M-Hab: Unterschied zwischen den Versionen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche
(Wiederholung)
(Die Ableitung der trigonometrischen Funktionen)
 
(9 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
__NOCACHE__
 +
 
=Wiederholung=
 
=Wiederholung=
  
 
[[Grundlegende_Kenntnisse_in_Mathematik|Grundlegende Fertigkeiten, die man zu Beginn der Oberstufe haben sollte]]
 
[[Grundlegende_Kenntnisse_in_Mathematik|Grundlegende Fertigkeiten, die man zu Beginn der Oberstufe haben sollte]]
 +
 +
[http://archiv2.gymnasium-stein.de/filedownload/Fachschaften/Faecher_Gruppe_2/Mathematik/Downloads/Wichtige_Funktionstypen.pdf Wichtige Funktionstypen]
  
 
[[Mathematik_10#Eigenschaften_von_Funktionen|Eigenschaften von Funktionen]]
 
[[Mathematik_10#Eigenschaften_von_Funktionen|Eigenschaften von Funktionen]]
Zeile 9: Zeile 13:
 
  [http://www.raschweb.de/M8-Geradengleichungen.pdf Geradengleichungen], [https://www.dw-aufgaben.de/ac/static/Q5085.html Gerdengleichung erstellen], <br>
 
  [http://www.raschweb.de/M8-Geradengleichungen.pdf Geradengleichungen], [https://www.dw-aufgaben.de/ac/static/Q5085.html Gerdengleichung erstellen], <br>
 
  [http://www.raschweb.de/M9-Mitternachtsformel.pdf Mitternachtsformel], [http://www.raschweb.de/M9-quadrat-Gleichung.pdf Quadratische Gleichungen], [http://www.raschweb.de/M9-Quadrat-Gleichung-Textaufgaben.pdf Quadratische Gleichungen 2]
 
  [http://www.raschweb.de/M9-Mitternachtsformel.pdf Mitternachtsformel], [http://www.raschweb.de/M9-quadrat-Gleichung.pdf Quadratische Gleichungen], [http://www.raschweb.de/M9-Quadrat-Gleichung-Textaufgaben.pdf Quadratische Gleichungen 2]
 +
 +
=Gebrochen-rationale Funktionen=
 +
 +
[[Gebrochen-rationale_Funktionen]]
 +
 +
=Die Ableitungsfunktion=
 +
 +
Von der Sekantensteigung zur Tangentensteigung:<br>
 +
<ggb_applet width="418" height="454"  version="4.2" ggbBase64="UEsDBBQACAgIABF6SkMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAARekpDAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVZbY/bNhL+nP6KgT4luLUt6t2BnWI3h6IBNk3QTYvDfbiAkmibXZlSJcprB/3xHZKSLL/E3XV9ub3FekmKQw7nmZlnKO/k+/UygxUrK56LqUWGtgVMJHnKxXxq1XI2iKzv33w3mbN8zuKSwiwvl1ROLW/oWNt1OBoSVy3mKe4SJbbrB2zgjx174Dk+G1AW2QM6s6nrOx7zImoBrCv+WuQ/0SWrCpqwu2TBlvQ2T6jUey6kLF6PRg8PD8NW+zAv56P5PB6uq9QCPLmoplbTeY3b7Sx6cLW4Y9tk9K/3t2b7AReVpCJhFiirav7muxeTBy7S/AEeeCoXaIsTWLBgfL5AM/0IzRwpoQJtLVgi+YpVuLQ31DbLZWFpMSrU/AvTg6wzx4KUr3jKyqnlDL1g7EUIUWSHPiGhb0FeciZkI0sanaN2t8mKswezreppjZEFMs+zmOKOBI2EPwAbxzQuwB+645ux1wwDMwx1Q+zmaaT+jNUATV/xiscZm1ozmlWIExezEn3UjSu5yZjW2jzY2kiuXJznX1DYtTEYDLD6eFfqE+DHUxOjXVNIT6ss65NKzfxWZ6fRI9HjNXo98DQKju3YcKUaYhoHmyAwU7Z5hqjqxjGNZxrfyHhmuWdEPSPjGRnP/XuwtiY6TwHV+Vs6t46Mjuh0/K848lT8GM89xk7i93SiKv2rPwca3VNm7mvcj51zFAbetzbRs8fhxY10neCKBJGOnmNKQ/tohpiWNO03wX4yaslv0hwIqoWSbZhCsmWljuiOwdccRsDHhA1CTD0fyBibULGiA8QHz8chiSBQbQiuIkIPXIhAyREXdMb6Ef7xQr1ZAD5upp6GtmZNcD3wXSA60T1AHECTBaLiuCjh++DjIqWeOGoLNwAvwJEbgYdnVDwRKrZ2cSGOUb0DLgFXLSYhOAEEDoSKa4inKCiI1OlxVwcCGwINPrINMo1hGVwSgasMwuwr8op3AC9YVrQ4aSi5KGq5A1+yTNuuzIvOjVo6zZP7mw7uZobRSvbFsEhtS6EpWjuV8sUkozHL8D5xp2IBYEUzRS9awywXEto4cMyzeUmLBU+qOyYlrqrgN7qit1Sy9Q8oXbW6tWpdwCesTjKecip+xUBRW6gNoavnqi609VwVd60lyfMyvdtUGD2w/jcrc3VtCYa27wVR6I31DyK4MVNu6AxD0k2MsWBXCVVh742H4/4PssPmq1NaM1t1ltE1q1r05yVP+/131U2epR3SRc6FfEsLWZf6aob8XCqTrsU8YxpZzfh4yUnu43x9ZyB1zV6fNgWObKM/nr/Ns7wEdRHx0ZB508am1TLqYJ2UrWVsLWG3PuJpN0/GjpbQbWxaLYVON0drDCWtlcRu1fBKsw1u3g9KHTFTa21BLbi8NSMMUJ7cN6YSs+CnehljtHURjAL/5OaCZy6zu2rIUTWbi6iZjPbCcHLPSsEyE2wCHV7ndWWiv4vgF5O6Yh+pXFyL9Gc2x7z9SBV9StRmRLVGk40s4UtcaJ43EFPl/l/w9OZpyuYla+Rppu/MxgF61u6H/sFjvdUPZb58J1afMLb2jjoZtfZMqqTkhYpgiJHP79k2SlNeUawGaX8dGl+hFYliJYROKlwtoLVc5KW+FmNqq5CAD/cyR5iRUDFuVVpnbIl3YpA6ekW9ZCVPOq8t9HUbz1g3ZnTuVh6DPP4NKWjP01swcfor8Q00KxYUe0PSRDHd4KH6SOnd3udpq7hRm6nbPSy50Nss6VpnKY2rPKslvt6gZ8T29cYcrOEovNiplydcQULV2eCjQHVmfN2DFxHjXzCWdgNjm2YSefMe3xgqzQWyyXrd+ZGnKRPdYanAWNIeQQYslLW24rSCMZMm3doCzdeE0wuExjHKReuiRHVqHw0KoByWiLUqJC/Xr2AK6/+8dF7pZbvunNVCR0Tnm5l12ne9nHmM8+xHOs8+jgd5JBjnoN8HMMmXSypSEPrO9FGRvLUt1NRWuBiba9k+uTabNEsPkNWVooPt+i9gPZ4SxDGFQbdNYbgYtiqzDtAlx9HVXFXpxGjyQrdfeumu7VX1budmYZ7ukdyp0J1aN03kviTwD1hcwcx0Xr2ydpE9DOZdyG/+95BvYXMa2LwLwbYbsLcY/Hvxeo2nJgqE/bClp8NW5VEHET2PDPBN+zJ0sMVv4O7FndPtdQbtst+FWVKZ+wVfFhlPuDyN8ocSa+U8FzQ7gveNwXt9jZecA8zjJ2AeH2Levr5+CwbuQd6muv1MIW9CfHMU8uQJkCfPBXK7QXxwwK7fDvJ3Qt16EYQ9tBODdnyA9Nun1MG3Z5FyEGmkVROb5nKMfKlCtn+FyDYYt18jZaBOA9wOlPjGkuGLIzFiyWdiBKnuuAj+Z/JXYBu1LZzdhufG0JO5n/iu9pVPzr7IH94Rdmys2FyNttn7mZxXpk4c9ZnUKQyNTN3FupzEa9Lhu+s9Y4X6auGD+FRSUal/De2+tD4eS/qcsHT36s8g+L/CMn5OWF62svwXsNylz7ssL/bLPT2gy/Q0Ge5/VZHuf1XhnvtVxQVIjpyLfh+0Uf9LHf1FbPMf2jd/AlBLBwijl8qdgwcAAFEeAABQSwECFAAUAAgICAARekpDRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIABF6SkOjl8qdgwcAAFEeAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAGwgAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br><br>
 +
Mit dem Schieberegler für h kann man den x-Abstand h des Punktes B vom Punkt A ändern. Geht h gegen 0 so wird aus der Sekante [AB] die Tangente in A an den Graphen der Funktion f.
 +
 +
 +
Lernpfad: [http://www.austromath.at/medienvielfalt/materialien/diff_einfuehrung/lernpfad/index.htm Einführung in die Differentialrechnung]<br>
 +
 +
[http://www.brinkmann-du.de/mathe/gost/diff_01_02.htm Wissen:Ableitung, Differentialquotient ] <br>
 +
 +
[http://www.brinkmann-du.de/mathe/rbtest/applets/diff_01/index.html  Begriff:Differenzierbarkeit]<br>
 +
 +
Die Ableitungsfunktion f'
 +
 +
<ggb_applet width="587" height="472"  version="4.2" ggbBase64="UEsDBBQACAgIAJB0Z0UAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICACQdGdFAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbK1YbW/bNhD+nP6Kgz4lQ2yTEiXZhd0i7TCsQNIVSzcM+zCAlmibjd4mUX4p+uN3JCVZtpOsTZLEoUge73jP3T2kPH27TRNYi7KSeTZz6JA4ILIoj2W2nDm1WgzGzts3r6ZLkS/FvOSwyMuUq5nDhq6zX4e9IfX0YhnPHJeEZOF6ZMBClw3YmLHBeBLwgT8JJ0E0id05YQ7AtpKvs/wjT0VV8EjcRiuR8us84sroXClVvB6NNpvNsLU+zMvlaLmcD7dV7ADuPKtmTvPwGtUdLNp4RtwlhI7+urm26gcyqxTPIuGA9qqWb16dTTcyi/MNbGSsVjMnIIEDKyGXK6U76NNICxXoayEiJdeiwqW9rvFZpYVjxHim58/sEySdOw7Eci1jUc4cMvQ8Qg4+DuSlFJlqhGljdNSqm66l2Fi9+smYZGQSYgxkJeeJmDkLnlTolswWJUKKOypr7FZql4g5L9v+fkP0En9RQH4VWhf6aXHA+LnBJWXeZUjIpe83APQNO6DyPDFaCfgT+PYNXOISuNQNtY2LTRDYKWLHiGcb1zbMNr6VYXY5s6LMyjArw7xH/Gz6e0ebgQNPWz+9vp8U/dMfDPIlI6d+jnt+Uu3EN6B696bxQO+bmv3rhjXdwHZD01BiG9pMjvU/g1fwTI+8J3lEe1ZtPjxs9CRfWov+OPx+i+6z/Oy8dO/z0vUf8PKZ4LZGqd8zirbMn/mcmPR+yM8Hof0BiwF7Tu0/wWBIDsq+rXnb0qZ9DIYX29R01LLhtNkQVCst26S0Emmlt+hNDDkBBR+LNwiRS3ygE2xCXcQuUB+Yj106hkC3IXi6bhl4MAYtRz0wFOSP8R8zNR2Aj7r0YGiLGzwGvgfUEBcDRAEM+SEmrocSvg8+LtLWqTbrBcAC7HhjYLhBTXuhphYP12EfjbvgUfD0WhqCG0DgQqipkzLNqMFY7x2VuhAQCPRS5E7kTcuZuGIMnvYGq6DIK9mBuxJJ0UXF4CizolYH2EVp3D6q/Eg6zqO7d0dYC16p9hmF8MDan4v2ADs4Ns+mCZ+LBC8XtzoNANY80VVu9C/yTEGbAq4dW5a8WMmouhVK4aoKvvA1v+ZKbH9B6ardoDFtTvOpqKNExpJnf2KOaBVaIbSHu+Gu9nBnjFkrUZ6X8e2uwsSB7d+izJFwxmRI+j+I5q6Z0jedo6kq4jrl2WQ46f/gCbJrpvwjfdSaFuvONb4VVYvlspRx//lD9S5P4i4eRS4z9Z4Xqi7NRQ15stQ+XWXLRBhoDfPilSe6m+fbW4upZ3V93hXYI9b+fPk+T/ISsB5d30eBpp3b1sjojXVSxMgQI0HaIMm4m6cT10iYdm5bI4VRt1trHKWtl5S0ZmRlmAaV93PMpMzM2TpQZ1Jd2x7mp4zuGlepXfCxTueYbl0Co8DP0l737NX20Ay918zuRcxMR0d5OL0TZSYSm20ZBrzO68qmf5fCZ9O6Ep+4Wl1l8e9iiXX7iWvqVGjNihqLthhFJFNcaMcbiLkO/x+4ezsai2UpGnmemBu0DYCZJf3cPxk2qn4p8/RDtv6MuXW01emo9WdaRaUsdAbDHLn8TuyzNJYVx5Mg7q9D5yv0ItKshNApjasDvFarvDSXZKxtPGvgY74WGmakU8ocXdfbohSVft2wkQLUivyz1SR1vr2AGdL8SBPwT7D959y9wPbcPgyQtC+McZGIFC/ZoEwFLOrMbKML/cLc4HWIIZ9/QdI6So09+jj9QEEAT4oV13f8BsiE79CLPrRG200eN4DTFnCMp0EFaaiwyVYIYfNUNSULBaozFd9Lmn1hKaTKO3xhqEz1d4v0w68yjkXWWMPstEiYgKQpz2LIzBn9SROLsz8bONGwWJ9r1Y5cWSXN0hNgDTt1qF09A1WfWg7xve8G9rfFohIKtjNnoO+Bu4dgJ/fDTob3AE/vB96UTmVM4euvNYZPLvEYCT3sf+3RjgFFE/HBmWdHj6rv4fB8xrIUJwG6QnDofXHij8dJJ04XBv4/Yer5/ZLZT06gpEP9pjj2ukM0NMCaryYQ0AG+PY8nzHVJ2MwH4VPrAI/ffzO7pLIUj3ySyEiqx8Nwm+SFOAoCP0E/fRz9rE5FKaMO4NQoRFDqlhhOgRg9pZRM9eyLqR8l+mMc9TymOWbwmXPTEPj59vzq4hLSC+eQQU45+5Babp5ELa7+9uklklaVPBLHB/N9pHBfSr8AN4z6h6m5ATffk735D1BLBwiIsv9YhAYAANcTAABQSwECFAAUAAgICACQdGdFRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAJB0Z0WIsv9YhAYAANcTAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAHAcAAAAA" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
 +
 +
Gegeben ist die Polynomfunktion <math> f: x \rightarrow \frac{1}{24}(x^4-16x^2)</math>.<math>A(x,y)</math> ist ein Punkt auf dem Graphen von <math>f</math>. In <math>A</math> ist die Tangente an den Graphen von <math>f</math>, diese hat die Steigung <math>m</math>. Trägt man über jeden x-Wert von <math>A</math> den Steigungswert <math>m</math> an, so erhält man den Punkt <math>M(x,m)</math>. Bewegt man nun den Punkt <math>A</math> auf dem Graphen von <math>f</math> so variiert auch der Punkt <math>M</math> und die Spur des Punktes <math>M</math> gibt den Graphen der Ableitungsfunktion <math>f'</math> wieder.
 +
 +
 +
[http://wiki.zum.de/Mathematik-digital/Zusammenhang_zwischen_Graph_einer_Funktion_und_Ableitung  Zusammenhang zwischen Funktion und 1. Ableitung]<br>
 +
 +
[http://www.matheprisma.uni-wuppertal.de/Module/Ableitung/Seite10.htm Überblick über die Ableitungsregeln mit Beispielen]<br>
 +
 +
[http://www.mathe-online.at/tests/diff1/poldiff.html multiple-choice]<br>
 +
[http://www.mathe-online.at/tests/diff1/ablerkennen.html Ableitungspuzzle]<br>
 +
 +
[http://www.frustfrei-lernen.de/mathematik/ableitung-produktregel-quotientenregel-ableitungsregel.html Produkt- und Quotientenregel]<br>
 +
[http://www.lehrer.uni-karlsruhe.de/~za275/archiv/m12/aufgaben/13_auf_quotientenregel.pdf Aufgaben zur Quotientenregel]<br>
 +
 +
[http://www.netalive.org/rationale-funktionen/chapters/2.3.10.html Musteraufgabe zur Kurvendiskussion]<br>
 +
 +
[[Ableitungsregeln]]
 +
 +
Wiederholungsaufgaben:  [http://raschweb.de/Q11-m-Diffquotient-Aufgaben-vollst.pdf Aufgaben zum Differentialquotienten], <br>
 +
[http://raschweb.de/Q11-m-Ableitungsregeln.pdf Aufgaben zu Produkt- und Quotientenregel]<br>
 +
[http://raschweb.de/Q11-m-Ableitung-Aufgabe_TIP-HOP-TR.pdf Polynomfunktionen - Ableitung, Monotonie, Extremwerte],
 +
 +
'''Das Newton-Verfahren'''
 +
 +
[http://www.mathematik.de/ger/fragenantworten/erstehilfe/nullstellenapproximation/newtonverfahren.html So geht es], [http://evlm.stuba.sk/~partner7/DBfiles/FACTs/Applets/newton.html Applet zur Veranschaulichung]
 +
 +
'''Zusatzaufgaben'''<br>
 +
[http://www.raschweb.de/Q11-m-Differentialquotient.pdf Differenzen-und Differentialquotient]<br>
 +
[http://ne.lo-net2.de/selbstlernmaterial/m/a/af/afindex.html Ableitungsfunktion]<br>
 +
[http://ne.lo-net2.de/selbstlernmaterial/m/a/ar1/ar1index.html Ableitungsregeln I]<br>
 +
[http://ne.lo-net2.de/selbstlernmaterial/m/a/tn/tnindex.html Tangenten und Normalen]<br>
 +
[http://ne.lo-net2.de/selbstlernmaterial/m/a/ew/ewindex.html Extremwerte]<br>
 +
 +
[[Ableitungsregeln]]
 +
 +
'''Das Newton-Verfahren'''
 +
 +
[http://www.mathematik.de/ger/fragenantworten/erstehilfe/nullstellenapproximation/newtonverfahren.html So geht es], [http://evlm.stuba.sk/~partner7/DBfiles/FACTs/Applets/newton.html Applet zur Veranschaulichung]
 +
 +
=Verkettung von Funktionen=
 +
 +
[http://www.youtube.com/watch?v=SaapHmTlv4c&feature=related Die Kettenregel]
 +
 +
=Die Ableitung der trigonometrischen Funktionen=
 +
 +
[[Mathematik_10#Trigonometrische_Funktionen|Wiederholung aus der 10. Klasse]]<br>
 +
[http://mathenexus.zum.de/html/analysis/funktionen_winkel_weiteres/AbleitWinkelfun.htm Ableitung der Winkelfunktionen] mit Beweis! und [http://www.zum.de/Faecher/M/NRW/pm/mathe/abl-bsp.htm#trig Beispielen]
 +
 +
[http://mathenexus.zum.de/html/analysis/funktionen_winkel_weiteres/AbleitWinkelfun_Ueb.htm Übungen mit Lösungen]
 +
 +
[[London_Eye_-_Anwendungen_von_Sinus-_und_Kosinusfunktionen|London Eye]]
 +
 +
=Die Umkehrfunktion=
 +
* [[Die Umkehrfunktion]]
 +
 +
=Ableitung der Exponential- und Logarithmusfunktionen=
 +
 +
[http://www.brinkmann-du.de/mathe/gost/efkt_01_04.htm Ableitung der e-Funktion]<br>
 +
[http://www.ina-de-brabandt.de/analysis/e/e-funktion-ableiten.html Beispiele]<br>
 +
 +
[http://www.onlinemathe.de/forum/Ableiten-von-Logarithmusfunktionen Ableitung der ln-Funktion]
 +
 +
[http://www.mathesite.de/pdf/abl.pdf '''Zusammenfassung''' der Ableitungsregeln und Ableitungen verschiedener Funktionen]
 +
 +
=Stochastik=
 +
 +
[http://www.super-nowa.de/Stochastik/Unterricht/04._Stochastische_Unabhaengigkeit.pdf Bedingte Wahrscheinlichkeiten]<br>
 +
[http://www.mathe-ist-einfach.de/Stochastik/Unabhaenigkeit.pdf Stochastische Unabhängigkeit]<br>
 +
[http://www.super-nowa.de/Stochastik/Unterricht/04._Stochastische_Unabhaengigkeit.pdf Zusammenfassung und Aufgaben zur Unabhängigkeit von Ereignissen]

Aktuelle Version vom 7. Mai 2019, 19:58 Uhr


Inhaltsverzeichnis

Wiederholung

Grundlegende Fertigkeiten, die man zu Beginn der Oberstufe haben sollte

Wichtige Funktionstypen

Eigenschaften von Funktionen

Aufgaben: Binomische Formeln, Binomische Formeln 2
Übungsblatt zum Wiederholen
Geradengleichungen, Gerdengleichung erstellen,
Mitternachtsformel, Quadratische Gleichungen, Quadratische Gleichungen 2

Gebrochen-rationale Funktionen

Gebrochen-rationale_Funktionen

Die Ableitungsfunktion

Von der Sekantensteigung zur Tangentensteigung:



Mit dem Schieberegler für h kann man den x-Abstand h des Punktes B vom Punkt A ändern. Geht h gegen 0 so wird aus der Sekante [AB] die Tangente in A an den Graphen der Funktion f.


Lernpfad: Einführung in die Differentialrechnung

Wissen:Ableitung, Differentialquotient

Begriff:Differenzierbarkeit

Die Ableitungsfunktion f'

Gegeben ist die Polynomfunktion  f: x \rightarrow \frac{1}{24}(x^4-16x^2).A(x,y) ist ein Punkt auf dem Graphen von f. In A ist die Tangente an den Graphen von f, diese hat die Steigung m. Trägt man über jeden x-Wert von A den Steigungswert m an, so erhält man den Punkt M(x,m). Bewegt man nun den Punkt A auf dem Graphen von f so variiert auch der Punkt M und die Spur des Punktes M gibt den Graphen der Ableitungsfunktion f' wieder.


Zusammenhang zwischen Funktion und 1. Ableitung

Überblick über die Ableitungsregeln mit Beispielen

multiple-choice
Ableitungspuzzle

Produkt- und Quotientenregel
Aufgaben zur Quotientenregel

Musteraufgabe zur Kurvendiskussion

Ableitungsregeln

Wiederholungsaufgaben:  Aufgaben zum Differentialquotienten, 
Aufgaben zu Produkt- und Quotientenregel
Polynomfunktionen - Ableitung, Monotonie, Extremwerte,

Das Newton-Verfahren

So geht es, Applet zur Veranschaulichung

Zusatzaufgaben
Differenzen-und Differentialquotient
Ableitungsfunktion
Ableitungsregeln I
Tangenten und Normalen
Extremwerte

Ableitungsregeln

Das Newton-Verfahren

So geht es, Applet zur Veranschaulichung

Verkettung von Funktionen

Die Kettenregel

Die Ableitung der trigonometrischen Funktionen

Wiederholung aus der 10. Klasse
Ableitung der Winkelfunktionen mit Beweis! und Beispielen

Übungen mit Lösungen

London Eye

Die Umkehrfunktion

* Die Umkehrfunktion

Ableitung der Exponential- und Logarithmusfunktionen

Ableitung der e-Funktion
Beispiele

Ableitung der ln-Funktion

Zusammenfassung der Ableitungsregeln und Ableitungen verschiedener Funktionen

Stochastik

Bedingte Wahrscheinlichkeiten
Stochastische Unabhängigkeit
Zusammenfassung und Aufgaben zur Unabhängigkeit von Ereignissen