M11 Betrag eines Vektors: Unterschied zwischen den Versionen
Zeile 135: | Zeile 135: | ||
<math>(x_1+1)^2+(x_2-3)^2 +x_3^2 -1 = 0</math> oder <math>(x_1+1)^2+(x_2-3)^2 +x_3^2 = 1 </math><br> | <math>(x_1+1)^2+(x_2-3)^2 +x_3^2 -1 = 0</math> oder <math>(x_1+1)^2+(x_2-3)^2 +x_3^2 = 1 </math><br> | ||
Das ist die Gleichung einer Kugel mit M(-1;3;0) und r = 1.<br> | Das ist die Gleichung einer Kugel mit M(-1;3;0) und r = 1.<br> | ||
− | g) Man kann die Gleichung umformen in <math>(x_1-8)^2+(x_2+4)^2-(x_3-3)^2=289</math>. Das ist die Gleichung einer Kugel mit M( | + | g) Man kann die Gleichung umformen in <math>(x_1-8)^2+(x_2+4)^2-(x_3-3)^2=289</math>. Das ist die Gleichung einer Kugel mit M(8;-4;3) und r = 17. <br> |
h) Man kann die Gleichung umformen in <math>(x_1+4)^2+x_2^2+x_3^2=25</math>. Das ist die Gleichung einer Kugel mit M(-4,0,0) und r=5.<br> | h) Man kann die Gleichung umformen in <math>(x_1+4)^2+x_2^2+x_3^2=25</math>. Das ist die Gleichung einer Kugel mit M(-4,0,0) und r=5.<br> | ||
− | i) Man kann die Gleichung umformen in <math> | + | i) Man kann die Gleichung umformen in <math>(x_1-1)^2+(x_2-5)^2+(x_3+1)^2=81</math>. Das ist die Gleichung einer Kugel mit M(1;5;-1) und r=2. }} |
Version vom 20. Januar 2021, 08:25 Uhr
Merke:
Der Betrag des Vektors ist . Die Entfernung zweier Punkte P und Q ist der Betrag des Vektors . |
a)
b)
c)
Merke:
Ein Vektor mit dem Betrag 1 heißt Einheitsvektor. |
1. Der Betrag des Vektors ist .
a)
b)
Merke:
Alle Punkte X(x1,x2,x3) im Raum, die von einem Punkt M(m1,m2,m3) die gleiche Entfernung r haben bilden die Oberfläche einer Kugel K. Für die Punkte X gilt: Die Gleichung ist die Vektorgleichung, die Koordinatengleichung einer Kugel. |
a) und
b) , also liegt O innerhalb der Kugel.
, also liegt P auf der Kugel.
105/1a
g) 1
105/2a)
b)
c)
d)
e) , also
f)
105/4 a) liefert , also
b) k = -1
c) es gibt kein k
d)
e)
f)
105/5a , also
105/3 a) den Betrag haben die Vektoren , den Betrag 2 haben die Vektoren , den Betrag haben die Vektoren
b) zueinander parallel sind und
c) Gegenvektoren sind und , sowie und .
d) gleich sind keine der Vektoren
106/7a)
b)
c)
106/8 a) , also --> dies liefert zwei Lösungen
und
b) k1=3 und k2=7
106/9 Die Dreiecksseiten sind
Ein Dreieck ist rechtwinklig, wenn der Satz des Pythagoras gilt: , also ist das Dreieck ABC bei B rechtwinklig.
Der Flächeninhalt ergibt sich zu
Aufgaben zur Kugel
106/11 a) Es ist
Koordinatengleichung: ; Vektorgleichung:
b) Es ist
Koordinatengleichung: ; Vektorgleichung: oder
106/12a) , A liegt innerhalb der Kugel.
, B liegt außerhalb der Kugel.
, C liegt auf der Kugel.
106/13a) ist eine Kugelgleichung mit M(3;0;-2) und r = 2
b) ist eine Kugelgleichung mit M(-3;4;2) und r O 13
c) ist keine Kugelgleichung (wenn man -1 auf die rechte Seite bringt ist auf der linken Seite die Summe von Quadraten, die nie -1 werden kann)
d) ist eine Kugelgleichung mit M(4;0;-2) und r = 8
f) ist eine Kugelgleichung mit M(0;0;0) und r = 2
Nun muss man wirklich rechnen :-(
e) Die Gleichung muss man jetzt in Koordinatenform bringen. Das erfolgt mit quadratischer Ergänzung.
Dazu schreibt man zuerst die Gleichung in dieser Form: und ergänzt "mit 0"
Die Klammern sind mit den binomischen Formeln Quadrate.
oder
Das ist die Gleichung einer Kugel mit M(-1;3;0) und r = 1.
g) Man kann die Gleichung umformen in . Das ist die Gleichung einer Kugel mit M(8;-4;3) und r = 17.
h) Man kann die Gleichung umformen in . Das ist die Gleichung einer Kugel mit M(-4,0,0) und r=5.