Rationale Funktionen Nullstellen

Aus RSG-Wiki
Wechseln zu: Navigation, Suche

Einführung und Definition - Indirekte Proportionalität- Definitionsmenge - Nullstellen - hebbare Definitionslücken - Einfluss der Parameter - Polstellen - senkrechte Asymptoten - Asymptoten für x gegen unendlich



Die Nullstellen einer gebrochen-rationalen Funktion findet man, indem man den Zähler der Funktion betrachtet, denn ein Bruch hat den Wert 0, wenn der Zähler den Wert 0 hat.

f:x \rightarrow \frac{2-x}{x^2} hat den Funktionswert 0, wenn der Zähler  2-x = 0 ist.

Nuvola apps kig.png   Merke


Die gebrochen-rationale Funktion f mit f(x) = \frac{a_zx^z+a_{z-1}x^{z-1}+ ... + a_1 x+a_0}{b_nx^n+b_{n-1}x^{n-1}+ ... + b_1 x+b_0} hat für  x = x_0, x_0 \in D_{max} den Funktionswert Null, wenn das Zählerpolynom g(x_0) = a_z a_0^z+a_{z-1}x_0^{z-1}+ ... + a_1 x_0+a_0 = 0 ist.


Bleistift 35fach.jpg   Aufgabe 1

Ordne die Nullstellen und die angegebenen Funktionen  f: x \rightarrow f(x) richtig zu!

x_1 = 0; x_2 = 2

keine Nullstelle

x_1 = -\frac{1}{2}-\frac{sqrt{5}}{2}; x_2=1; x_3=-\frac{1}{2}+\frac{sqrt{5}}{2}

f(x) = \frac{x^2-64x}{x^2+64}

f(x) = \frac{x^2+2x}{x^2-64}

f(x) = \frac{2x}{x-12}

x_1 = -8; x_2 = 8x = 0 x_1 = -2; x_2 = 0f(x) = \frac{2}{2x-6}f(x) = \frac{x^3-2x+1}{x^2-3x+2}f(x) = \frac{x^2-2x}{x^2-1}


Bleistift 35fach.jpg   Aufgabe 2

Ermittle jeweils die Nullstellen der Funktion:

a) f mit f(x) = \frac{13-x}{(x-1)^2}

b) g mit g(x) = \frac{16-x^2}{x^2+1}

c) h mit h(x) = \frac{16}{x^2-1}

d) k mit k(x) = \frac{x^2+3x+2}{(x-3)(x-2)}

e) l mit l(x) = \frac{x^2-5x+6}{(x^2+7)}

f) m mit m(x) = \frac{x^3+x^2-6x}{x^4+1}

g) n mit n(x) = \frac{x^3+x^2-6x}{x^2+4x+4}

[Lösung anzeigen]