Rationale Funktionen Polstellen: Unterschied zwischen den Versionen
(3 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 8: | Zeile 8: | ||
[[Rationale_Funktionen_Asymptoten|Asymptoten für x gegen unendlich]] | [[Rationale_Funktionen_Asymptoten|Asymptoten für x gegen unendlich]] | ||
---- | ---- | ||
− | + | __NOCACHE__ | |
Die Funktion <math>f: x \rightarrow \frac{1}{x}</math> ist für <math> x = 0 </math> nicht definiert. Wie verhält sie sich in der Umgebung von <math>0</math>? Je kleiner <math>x</math> betragsmäßig wird, desto größer wird der Betrag von <math>\frac{1}{x}</math>. Zeigt eine Funktion für einen x-Wert ein solches Verhalten, dann ist der x-Wert eine Definitionslücke und man bezeichnet diese Stelle als Polstelle. | Die Funktion <math>f: x \rightarrow \frac{1}{x}</math> ist für <math> x = 0 </math> nicht definiert. Wie verhält sie sich in der Umgebung von <math>0</math>? Je kleiner <math>x</math> betragsmäßig wird, desto größer wird der Betrag von <math>\frac{1}{x}</math>. Zeigt eine Funktion für einen x-Wert ein solches Verhalten, dann ist der x-Wert eine Definitionslücke und man bezeichnet diese Stelle als Polstelle. | ||
Zeile 20: | Zeile 20: | ||
1. Die Funktion <math>f: x \rightarrow \frac{1}{x}</math> hat für <math> x = 0 </math> einen Pol 1. Ordnung (<math>0</math> ist einfache Nullstelle des Nenners). | 1. Die Funktion <math>f: x \rightarrow \frac{1}{x}</math> hat für <math> x = 0 </math> einen Pol 1. Ordnung (<math>0</math> ist einfache Nullstelle des Nenners). | ||
− | <center> | + | <center>[[Datei:Indirekte proportionalität.jpg]]</center> |
Nähert man sich von links an, also <math> x \rightarrow 0</math> mit <math>x<0</math>, dann streben die Funktionswerte nach <math>-\infty</math>; nähert man sich von rechts an, also <math> x \rightarrow 0</math> mit <math>x>0</math>, dann streben die Funktionswerte nach <math>\infty</math>. <math>f</math> hat an <math> x = 0</math> eine '''Polstelle mit Vorzeichenwechsel'''. Die Gerade <math>x = 0</math> ist senkrechte Asymptote des Graphen von <math>f</math>. | Nähert man sich von links an, also <math> x \rightarrow 0</math> mit <math>x<0</math>, dann streben die Funktionswerte nach <math>-\infty</math>; nähert man sich von rechts an, also <math> x \rightarrow 0</math> mit <math>x>0</math>, dann streben die Funktionswerte nach <math>\infty</math>. <math>f</math> hat an <math> x = 0</math> eine '''Polstelle mit Vorzeichenwechsel'''. Die Gerade <math>x = 0</math> ist senkrechte Asymptote des Graphen von <math>f</math>. | ||
2. Die Funktion <math>g: x \rightarrow \frac{1}{x^2}</math> hat für <math> x = 0 </math> einen Pol 2. Ordnung (<math>0</math> ist zweifache Nullstelle des Nenners). | 2. Die Funktion <math>g: x \rightarrow \frac{1}{x^2}</math> hat für <math> x = 0 </math> einen Pol 2. Ordnung (<math>0</math> ist zweifache Nullstelle des Nenners). | ||
− | <center> | + | <center>[[Datei:1 durch x^2.jpg]]</center> |
Nähert man sich von links oder von rechts an, also <math> x \rightarrow 0</math> mit <math>x<0</math> oder <math>x>0</math>, dann streben die Funktionswerte in beiden Fällen nach <math>\infty</math>. <math>g</math> hat an <math> x = 0</math> eine '''Polstelle ohne Vorzeichenwechsel'''. Die Gerade <math>x = 0</math> ist senkrechte Asymptote des Graphen von <math>f</math>. | Nähert man sich von links oder von rechts an, also <math> x \rightarrow 0</math> mit <math>x<0</math> oder <math>x>0</math>, dann streben die Funktionswerte in beiden Fällen nach <math>\infty</math>. <math>g</math> hat an <math> x = 0</math> eine '''Polstelle ohne Vorzeichenwechsel'''. Die Gerade <math>x = 0</math> ist senkrechte Asymptote des Graphen von <math>f</math>. | ||
Aktuelle Version vom 21. September 2017, 13:49 Uhr
Einführung und Definition - Indirekte Proportionalität- Definitionsmenge - Nullstellen - hebbare Definitionslücken - Einfluss der Parameter - Polstellen - senkrechte Asymptoten - Asymptoten für x gegen unendlich
Die Funktion ist für
nicht definiert. Wie verhält sie sich in der Umgebung von
? Je kleiner
betragsmäßig wird, desto größer wird der Betrag von
. Zeigt eine Funktion für einen x-Wert ein solches Verhalten, dann ist der x-Wert eine Definitionslücke und man bezeichnet diese Stelle als Polstelle.
Ist an einer Definitionslücke
dann ist die Definitionslücke |
Beispiele:
1. Die Funktion hat für
einen Pol 1. Ordnung (
ist einfache Nullstelle des Nenners).
![Indirekte proportionalität.jpg](/images/9/93/Indirekte_proportionalit%C3%A4t.jpg)
Nähert man sich von links an, also mit
, dann streben die Funktionswerte nach
; nähert man sich von rechts an, also
mit
, dann streben die Funktionswerte nach
.
hat an
eine Polstelle mit Vorzeichenwechsel. Die Gerade
ist senkrechte Asymptote des Graphen von
.
2. Die Funktion hat für
einen Pol 2. Ordnung (
ist zweifache Nullstelle des Nenners).
![1 durch x^2.jpg](/images/8/8c/1_durch_x%5E2.jpg)
Nähert man sich von links oder von rechts an, also mit
oder
, dann streben die Funktionswerte in beiden Fällen nach
.
hat an
eine Polstelle ohne Vorzeichenwechsel. Die Gerade
ist senkrechte Asymptote des Graphen von
.
a) x = 2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<2): ; Annäherung von rechts (x>2):
b) x = 2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<2): ; Annäherung von rechts (x>2):
c) x = 2; Pol 2. Ordnung; Pol ohne Vorzeichenwechsel; Annäherung von links (x<2): ; Annäherung von rechts (x>2):
d) x = 3; Pol 7. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3): ; Annäherung von rechts (x>3):
e) x = -2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<-2): ; Annäherung von rechts (x>-2):
- x = 3; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3):
; Annäherung von rechts (x>3):
e) x = 0; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<-2): ; Annäherung von rechts (x>-2):
- x = 3; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3):
; Annäherung von rechts (x>3):
![]() |
![]() |
![]() |
keine Polstelle |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Man kann allgemein für eine gebrochen-rationale Funktion Ist n gerade, dann hat die Funktion Ist n ungerade, dann hat die Funktion Die Ordnung der Polstelle |