M11 Ableitung der Exponentialfunktionen: Unterschied zwischen den Versionen
| Zeile 30: | Zeile 30: | ||
<center><math> (a^x)' = ln(a) \cdot a^x</math>.</center> }} | <center><math> (a^x)' = ln(a) \cdot a^x</math>.</center> }} | ||
| − | {{Merke|1=Eigenschaften der e-Funktion (natürliche Exponentialfunktion) <math>f:x \rightarrow e^x</math> | + | {{Merke|1=Eigenschaften der e-Funktion (natürliche Exponentialfunktion) <math>f:x \rightarrow e^x</math> [[Datei:e-funktion.jpg|thumb|350px]] |
* D = R, W = R<sup>+</sup><br> | * D = R, W = R<sup>+</sup><br> | ||
| − | |||
| − | |||
* e<sup>x</sup> > 0 | * e<sup>x</sup> > 0 | ||
| Zeile 44: | Zeile 42: | ||
* Der Graph der e-Funktion ist streng montoton steigend. | * Der Graph der e-Funktion ist streng montoton steigend. | ||
| − | * Die negative x-Achse ist Asymptote. }} | + | * Die negative x-Achse ist Asymptote. |
| + | |||
| + | * Für <math>x \to \infty</math> ist <math>e^x \to \infty</math>}} | ||
Aktuelle Version vom 19. März 2021, 14:59 Uhr
|
Merke:
Die Funktion Der Graph ist eine Exponentialkurve. |
Für die Ableitung der Exponentialfunktion zur Basis a geht man auf die Definition zurück:
.
Löst man die Gleichung
nach b auf, so erhält man
. Wenn
ist, dann ist
und man kann mittels einer Tabellenkalkulation den Grenzwert
berechnen.
Dieser Grenzwert wird als Eulersche Zahl e bezeichnet. Es ist e = 2, 718 281 828 459 045 235 360 287 471 352 ... .
|
Merke:
Die Eulersche Zahl e ist definiert durch den Grenzwert Dies hat zur Folge, dass die Exponentialfunktion zur Basis e oder hat. Jede Funktion Die Gleichung
. |
30px Merke
Eigenschaften der e-Funktion (natürliche Exponentialfunktion)
|
Beachten Sie die Ableitungsregeln, insbesondere die Kettenregel.
a) 
b) 
c) 
d) 
e) 
f) 
g) 
h) 
Dies hätte man auch erhalten, wenn man
ableitet.
i) 
j) 
k) 
l)
- Beachte e2 ist eine Zahl und hier steht keine Exponentialfunktion!
m) 
n) 
o) 
p) 
q) 
r) 
s) 
t) 
u) 
v) 
w) 
x)
|
|
|
|
|
|
|
|
a) F(x) = ex + x + C
b) F(x) = -e-x + C
c) F(x) = 0,5(ex - e-x) + C
d) F(x) = 0,5x2 + 2x + ex+2 + C
e) F(x) = e1+x + C
(b ∈ R+\{0}, a ∈ R+) heißt Exponentialfunktion zur Basis a.
.
mit D = R und W = R+ die Ableitung
oder
ist Stammfunktion von
.
hat die Lösung
. Dabei ist
der Logarithmus zur Basis e und heißt natürlicher Logarithmus.
und der Kettenregel erhält man
.
ist























