Umkehrfunktion Monotonie

Aus RSG-Wiki
Wechseln zu: Navigation, Suche

Startseite - Wertetabelle - Graph - Term - Beispiele - Definitions- und Wertemenge - Monotoniekriterium



Nuvola apps kig.png   Merke

Eine Funktion  f heißt streng monoton zunehmend im Intervall [a;b], wenn für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) < f(x_2)

Eine Funktion  f heißt streng monoton abnehmend im Intervall [a;b], wenn für alle  x_1,x_2 \in [a;b] gilt: x_1 < x_2 \Rightarrow f(x_1) > f(x_2)

Dies heißt, dass bei streng monoton zunehmend mit wachsenden x-Werten auch die y-Werte größer werden. Der Graph geht "bergauf".

Streng monoton abnehmend bedeutet, dass mit wachsenden x-Werten die y-Werte kleiner werden. Der Graph geht "bergab".


30px   Aufgabe


Teste dich! Klicke im folgenden Quiz auf die richtigen Zuordnungen! Betrachte stets den Funktionsgraph im Intervall [1;4].

Monotonie f1.jpg

Monotonie f2.jpg

Monotonie f5.jpg

Monotonie f3.jpg

Monotonie f6.jpg

Monotonie f4.jpg

Monotonie f7.jpg

prüfen!


Nuvola apps kig.png   Merke

Ist eine Funktion  f im Intervall [a;b] streng monoton, dann ist sie in dem Intervall umkehrbar.


30px   Aufgabe

Wo ist die Quadratfunktion  f: x\rightarrow x^2 mit D = R umkehrbar?

Gib jeweils die Umkehrfunktion an.

[Lösung anzeigen]