Umkehrfunktion Monotonie
Startseite - Wertetabelle - Graph - Term - Beispiele - Definitions- und Wertemenge - Monotoniekriterium
Eine Funktion heißt streng monoton zunehmend im Intervall [a;b], wenn für alle gilt: Eine Funktion heißt streng monoton abnehmend im Intervall [a;b], wenn für alle gilt: |
Dies heißt, dass bei streng monoton zunehmend mit wachsenden x-Werten auch die y-Werte größer werden. Der Graph geht "bergauf".
Streng monoton abnehmend bedeutet, dass mit wachsenden x-Werten die y-Werte kleiner werden. Der Graph geht "bergab".
Ist eine Funktion im Intervall streng monoton, dann ist sie in dem Intervall umkehrbar. |
1. Die Quadratfunktion ist im Intervall streng monoton abnehmend und im Intervall streng monoton zunehmend.
2. Der linke Ast ist für umkehrbar
.
Der rechte Ast ist für auch umkehrbar.
3. a) Für den linken Ast ist die Quadratfunktion eingeschränkt mit und .
Die Umkehrfunktion ist mit und .
3. b) Für den rechten Ast ist die Quadratfunktion eingeschränkt mit und
Die Umkehrfunktion mit und .
1. Potenzfunktionen mit ungeraden Exponenten sind in umkehrbar. Die Umkehrfunktion ist die n-Wurzelfunktion mit , . 2. Potenzfuntkionen mit geraden Exponenten sind in nicht umkehrbar. Sie müssen eingeschränkt werden, z.B. auf . Die Umkehrfunktion ist die n-Wurzelfunktion mit , . |
Zurück zur Startseite - Wertetabelle - Graph - Term - Beispiele - Definitions- und Wertemenge - Monotoniekriterium